216,357 research outputs found

    Prospects of a mathematical theory of human behavior in complex man-machine systems tasks

    Get PDF
    A hierarchy of human activities is derived by analyzing automobile driving in general terms. A structural description leads to a block diagram and a time-sharing computer analogy. The range of applicability of existing mathematical models is considered with respect to the hierarchy of human activities in actual complex tasks. Other mathematical tools so far not often applied to man machine systems are also discussed. The mathematical descriptions at least briefly considered here include utility, estimation, control, queueing, and fuzzy set theory as well as artificial intelligence techniques. Some thoughts are given as to how these methods might be integrated and how further work might be pursued

    Interpreting health events in big data using qualitative traditions

    Get PDF
    © The Author(s) 2020. The training of artificial intelligence requires integrating real-world context and mathematical computations. To achieve efficacious smart health artificial intelligence, contextual clinical knowledge serving as ground truth is required. Qualitative methods are well-suited to lend consistent and valid ground truth. In this methods article, we illustrate the use of qualitative descriptive methods for providing ground truth when training an intelligent agent to detect Restless Leg Syndrome. We show how one interdisciplinary, inter-methodological research team used both sensor-based data and the participant’s description of their experience with an episode of Restless Leg Syndrome for training the intelligent agent. We make the case for clinicians with qualitative research expertise to be included at the design table to ensure optimal efficacy of smart health artificial intelligence and a positive end-user experience

    Measuring intelligence in natural and artificial systems

    Get PDF
    A systematic understanding of the relationship between intelligence and consciousness can only be achieved when we can accurately measure intelligence and consciousness. In other work, I have suggested how the measurement of consciousness can be improved by reframing the science of consciousness as a search for mathematical theories that map between physical and conscious states. This paper discusses the measurement of intelligence in natural and artificial systems. While reasonable methods exist for measuring intelligence in humans, these can only be partly generalized to non-human animals and they cannot be applied to artificial systems. Some universal measures of intelligence have been developed, but their dependence on goals and rewards creates serious problems. This paper sets out a new universal algorithm for measuring intelligence that is based on a system’s ability to make accurate predictions. This algorithm can measure intelligence in humans, non-human animals and artificial systems. Preliminary experiments have demonstrated that it can measure the changing intelligence of an agent in a maze environment. This new measure of intelligence could lead to a much better understanding of the relationship between intelligence and consciousness in natural and artificial systems, and it has many practical applications, particularly in AI safety

    Advanced Information Processing Methods and Their Applications

    Get PDF
    This Special Issue has collected and presented breakthrough research on information processing methods and their applications. Particular attention is paid to the study of the mathematical foundations of information processing methods, quantum computing, artificial intelligence, digital image processing, and the use of information technologies in medicine

    Employing AI Applications to Authenticate People through Neural Networks

    Get PDF
    Artificial intelligence is used to develop techniques for verifying people by sensory factors. This article aims to design a robot to verify the entry of the authorized persons to the firms. This paper uses neural networks with artificial intelligence applications to authenticate people, while the program is based on testing four factors: the face, eye, voice, and handprint. The AI application depends on a mathematical algorithm to test the authority of staff; meanwhile, neural networks analyse and examine the visual systems that connect imaging devices (camera) with a computer. Moreover, this is done through the huge amount of data in a smart computer database that can be updated, with speed and objectivity, through the Internet to reach accurate results. The results indicate that the model designed for artificial intelligence has economic feasibility; in addition to that, it can help detect diseases that can affect employees by multiple parametric methods of verification
    • …
    corecore