3,238 research outputs found

    Selected Analytical Techniques of Solid State, Structure Identification, and Dissolution Testing in Drug Life Cycle

    Get PDF
    The textbook provides an overview of the main techniques applied in pharmaceutical industry, with the focus on solid-state analysis. It discusses spectral methods, thermal analysis, and dissolution testing, explains the theoretical background for each method and shows practical examples from a real-life drug-design and quality control applications. The textbook is thus intended for both pharmacy students and early career professionals

    2023-2024 academic bulletin & course catalog

    Get PDF
    University of South Carolina Aiken publishes a catalog with information about the university, student life, undergraduate and graduate academic programs, and faculty and staff listings

    Designing a Simulation showcasing the Pharmacological Effects of Beta-2-Agonists in Asthma Treatment; Virtual Reality as a supplement to traditional teaching methods

    Get PDF
    As educational technology evolves, there is a growing interest in applying VR in teaching complex scientific concepts that benefit from a visual and immersive learning environment. Motivated by the promising results of VR in medical education across multiple disciplines, we aimed to investigate the applicability and effectiveness of this technology in pharmacology education. This discipline, which involves understanding how drugs work within the human body, is often considered complex and challenging for students. However, it is a critical component of medical education and is essential in treating and preventing various diseases. The study was driven by two research inquiries. The primary inquiry aimed to explore the potential design possibilities of a virtual reality (VR) simulation for visualizing the pharmacological effects of beta-2-agonists in asthma treatment. The secondary question focused on evaluating the perspectives of students and educators regarding the efficacy of the VR application in learning pharmacology concepts compared to conventional teaching approaches. The application underwent two rounds of evaluation sessions with both students and teachers. Participants responded positively to the immersive learning experience, particularly appreciating the detailed visualizations and interactivity offered by the VR application. Their feedback highlighted the potential of VR to create a more intuitive understanding of complex pharmacological processes. Despite the evaluation phase featuring a limited number of participants, the received feedback suggested a promising potential for VR as an additional tool. The study, therefore, serves as a proof of concept, showcasing the possibilities of VR in enhancing pharmacology education and paving the way for future research and development in this area.Masteroppgave i Programvareutvikling samarbeid med HVLPROG399MAMN-PRO

    Developing active biomaterials for implantable devices: platforms to investigate capacitive charge based control of biofouling

    Get PDF
    Implantable devices, in particular biosensors, have clear utility within medicine, but face a hurdle to long-term function due to adsorption of biomolecules (biofouling) and subsequent immune re- sponse to implants, the foreign body response (FBR). Strategies to control this immune reaction have included material selection, drug release and, more recently, engineered surface properties. The increasing use of embedded electronics within many classes of implanted devices presents an opportunity to exploit electromagnetic phenomena at the device surface to mitigate biofouling and FBR. Such active biomaterials would allow dynamic modification of the apparent material properties of an implanted device. A hypothesis was developed that biological interaction with a biomaterial surface can be altered by capacitive charging. A platform was constructed to test this and related hypotheses around cell and protein surface interactions in vitro and adapted into a second platform for initial characterisa- tion work on an early in vivo model using chick eggs. These platforms were designed to be easy to fabricate and to provide multiple electrical connections into a substrate in contact with biological solutions or tissue. Electrodes were fabricated from fluoropolymer coated tantalum pentoxide, a high-κ dielectric, and compared against adjacent, identically coated, silicon dioxide regions. Cells from the MDA- MB-231 cancer cell line were cultured on these regions under electrical stimulation. A voltage de- pendent reduction of cell attachment and spreading was detected on capacitively charged surfaces compared to uncharged controls. The tentative results, suggest capacitively charged surfaces hold promise as active biomaterials. A second cell type MCF-7 did not reproduce the effect, implying a more coherent understanding is required of the mechanisms behind cell surface interactions on these surfaces. Multiple independent bioelectrochemical cell-surface interactions were observed using the plat- form and several quantification techniques were successfully employed. It is therefore argued that the platform may have wide applicability as a future research tool

    Multi-Character Motion Retargeting for Large Scale Changes

    Get PDF

    Applications of a Biomechanical Patient Model for Adaptive Radiation Therapy

    Get PDF
    Biomechanical patient modeling incorporates physical knowledge of the human anatomy into the image processing that is required for tracking anatomical deformations during adaptive radiation therapy, especially particle therapy. In contrast to standard image registration, this enforces bio-fidelic image transformation. In this thesis, the potential of a kinematic skeleton model and soft tissue motion propagation are investigated for crucial image analysis steps in adaptive radiation therapy. The first application is the integration of the kinematic model in a deformable image registration process (KinematicDIR). For monomodal CT scan pairs, the median target registration error based on skeleton landmarks, is smaller than (1.6 ± 0.2) mm. In addition, the successful transferability of this concept to otherwise challenging multimodal registration between CT and CBCT as well as CT and MRI scan pairs is shown to result in median target registration error in the order of 2 mm. This meets the accuracy requirement for adaptive radiation therapy and is especially interesting for MR-guided approaches. Another aspect, emerging in radiotherapy, is the utilization of deep-learning-based organ segmentation. As radiotherapy-specific labeled data is scarce, the training of such methods relies heavily on augmentation techniques. In this work, the generation of synthetically but realistically deformed scans used as Bionic Augmentation in the training phase improved the predicted segmentations by up to 15% in the Dice similarity coefficient, depending on the training strategy. Finally, it is shown that the biomechanical model can be built-up from automatic segmentations without deterioration of the KinematicDIR application. This is essential for use in a clinical workflow

    LIPIcs, Volume 274, ESA 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 274, ESA 2023, Complete Volum

    Multiscale simulation methodology for the forming behavior of biaxial weft-knitted fabrics

    Get PDF
    Trotz der guten Drapierbarkeit ist das Formen von flachen Mehrlagen-Gestricken (MLG) zu 3D-Preforms für schalenartige Faser-Kunststoff-Verbund (FKV) Bauteile immer noch eine Herausforderung, da einige Defekte wie Falten, Gassenbildung oder Faserschäden nicht vollständig vermieden werden können. Daher ist vor der Massenproduktion eine Optimierung erforderlich. Die virtuelle Optimierung des Umformprozesses mit Hilfe von Finite-Element-Methode (FEM) Modellen ist ein attraktiver Ansatz, da die Rechenkosten immer geringer werden. Dazu wurde ein auf Kontinuumsmechanik basierendes Makromodell erfolgreich für MLG implementiert. Der makroskalige Modellierungsansatz bietet angemessene Rechenkosten und kann gängige Defekte wie Faltenbildung vorhersagen. Weitere Defekte wie Faserversatz, ondulierte Fasern, Knicken von Fasern, Faserschädigung und Gassenbildung können jedoch mit dem Makromodell nicht vorhergesagt werden. Da die Komplexität von Bauteilen aus FKV und die Qualitätsanforderungen an die 3D-Preforms zunehmen, sind FEM-Modelle mit höherem Darstellungsgrad erforderlich. Im am weitesten entwickelten mesoskaligen FEM-Modell für MLG verhindert die zu starke Vereinfachung des Strickfadensystems mit Federelementen jedoch die Fähigkeit dieses FEM-Modells, Faserverschiebungen und Gassenbildung bei großer Verformung zu beschreiben, wobei das Gleiten zwischen den Fäden berücksichtigt werden muss. Ziel ist daher die Entwicklung, Validierung und Anwendung eines mesoskaligen FEM-Modells für MLG, um die derzeitigen Einschränkungen zu überwinden. Es werden neue Modellierungsstrategien für biaxiale MLG auf der Mesoskala entwickelt. Die mechanischen Eigenschaften von MLG werden durch eine Reihe von textilphysikalischen Prüfungen charakterisiert und analysiert, die alle notwendigen Daten für den Aufbau sowie die Validierung der FEM-Modelle liefern. Es sollen zwei Ansätze zur Modellierung des Verstärkungsgarns implementiert und verglichen werden: durch Balken- und durch Schalenelemente. Die validierten Modelle können für die Umformsimulation verwendet werden. Es folgt eine Benchmark-Studie über die Kapazität und Zuverlässigkeit der verfügbaren Makromodelle und der entwickelten Mesomodelle durch Umformsimulation. Als Grundlage für die Benchmark-Studie werden Umformversuche durchgeführt. Das zweite Ziel der Arbeit ist die Modellierung von FKV auf verschiedenen Skalen. Die Modellierung von FKV auf der Makroebene wird mit den Daten der Faserorientierung durchgeführt, die aus der Umformsimulation gewonnen werden. Eine Mapping-Methode hilft dabei, die vorhergesagte Faserorientierung aus der Umformsimulation von dem MLG Mesomodell auf das FKV-Makromodell zu übertragen. Um den FKV zu charakterisieren und die Parameter für das FKV Modell vorzubereiten, werden Versuche mit FKV durchgeführt und ausgewertet. Basierend auf dem Mesomodell des MLG wird eine weiteres FKV-Modell vorgeschlagen, wobei Garn und Matrix getrennt modelliert werden. Dieses mesoskalige FKV-Modell enthält auch eine Kontaktformulierung, mit der die Delamination im FKV-Bauteil vorhergesagt werden kann. Prüfungen von Schale-Rippen Strukturen dienen als Grundlage für die Modellvalidierung. Das validierte Modell wird erfolgreich zur Vorhersage des mechanischen Verhaltens weiterer Schale-Rippen Strukturen mit unterschiedlicher Höhe und Anordnung der Rippen verwendet.:Kapitel 1 stellt die Einleitung und Problemstellung von dem Thema FKV vor. Kapitel 2 gibt eine Übersicht über Stand-der-Technik von den Hochleistungsfasern, Herstellung von textilen Verstärkungen und Halbzeugen, Fertigung von FKV sowie von Prüftechnik für Textilien und FKV. Zunächst wurden in Kapitel 3 eine Einführung in die Modellierung mit FEM allgemein und Stand-der-Technik der Modellierung von technische Textilien gegeben. In Kapitel 4 wurden die Zielsetzung und das Forschungsprogramm festgelegt. Die experimentellen Arbeiten werden in Kapitel 5 vorgestellt. Der erste Schritt ist die Auswahl des Materials und der Konfiguration für die MLG. Sowohl das Ausgangsmaterial als auch die produzierten MLG sollten systematisch getestet werden. Als Referenz wird auch ein Leinwandgewebe in die Prüfprogramme aufgenommen. Neben der Charakterisierung von textilen Flächengebilden sollen auch deren gleichwertige FKV geprüft werden. Das erste Ziel des Forschungsprogramms wird in Kapitel 6 erreicht, wobei verschiedene Ansätze zur Modellierung von MLG vorgestellt und validiert werden. Die entwickelten und validierten FEM-Modelle werden für die Benchmark-Studie der Umformsimulation in Kapitel 7 verwendet. Kapitel 8 befasst sich mit der Modellierung von FKV in verschiedenen Skalen. Zunächst wird das Mapping-Verfahren vorgestellt. Es wird ein Mapping für ein schalenförmiges T-Napf-Bauteil durchgeführt. Die trukturanalyse für das T-Napf-Bauteil erfolgt für übliche Lastfälle. Zweitens wird ein mesoskaliges FEM Modell für MLG-verstärkte FKV vorgeschlagen. Dieses Modell wird auf der Grundlage der Prüfdaten aus Kapitel 5 validiert. Das validierte Modell wird dann zur Vorhersage des mechanischen Verhaltens eines Schale-Rippen-FKV-Bauteils unter Biegebelastung verwendet. Kapitel 9 gibt eine Zusammenfassung von den Forschungsergebnissen und Vorschlägen für mögliche weitere Forschungen rund um dem Thema MLG als Verstärkung für FKV. Die Kombination von vorhandenen Makro-und Mesomodellen in einer einzigen Simulation kann die Berechnungskosten senken, ohne die Vorhersagenfähigkeiten des Modelles kompromittiert zu werden

    Authentic Alignment: Toward an Interpretative Phenomenological Analysis (IPA) informed model of the learning environment in health professions education

    Get PDF
    It is well established that the goals of education can only be achieved through the constructive alignment of instruction, learning and assessment. There is a gap in research interpreting the lived experiences of stakeholders within the UK learning environment toward understanding the real impact – authenticity – of curricular alignment. This investigation uses a critical realist framework to explore the emergent quality of authenticity as a function of alignment. This project deals broadly with alignment of anatomy pedagogy within UK undergraduate medical education. The thread of alignment is woven through four aims: 1) to understand the alignment of anatomy within the medical curriculum via the relationships of its stakeholders; 2) to explore the apparent complexity of the learning environment (LE); 3) to generate a critical evaluation of the methodology, Interpretative Phenomenological Analysis as an approach appropriate for realist research in the complex fields of medical and health professions education; 4) to propose a functional, authentic model of the learning environment. Findings indicate that the complexity and uncertainty inherent in the LE can be reflected in spatiotemporal models. Findings meet the thesis aims, suggesting: 1) the alignment of anatomy within the medical curriculum is complex and forms a multiplicity of perspectives; 2) this complexity is ripe for phenomenological exploration; 3) IPA is particularly suitable for realist research exploring complexity in HPE; 4) Authentic Alignment theory offers a spatiotemporal model of the complex HPE learning environment: the T-icosa

    2023-2024 Undergraduate Academic Catalog

    Get PDF
    https://digitalcommons.cedarville.edu/academic_catalogs/1128/thumbnail.jp
    corecore