654,646 research outputs found

    On infinite-volume mixing

    Full text link
    In the context of the long-standing issue of mixing in infinite ergodic theory, we introduce the idea of mixing for observables possessing an infinite-volume average. The idea is borrowed from statistical mechanics and appears to be relevant, at least for extended systems with a direct physical interpretation. We discuss the pros and cons of a few mathematical definitions that can be devised, testing them on a prototypical class of infinite measure-preserving dynamical systems, namely, the random walks.Comment: 34 pages, final version accepted by Communications in Mathematical Physics (some changes in Sect. 3 -- Prop. 3.1 in previous version was partially incorrect

    Asymptotically exponential hitting times and metastability: a pathwise approach without reversibility

    Get PDF
    We study the hitting times of Markov processes to target set GG, starting from a reference configuration x0x_0 or its basin of attraction. The configuration x0x_0 can correspond to the bottom of a (meta)stable well, while the target GG could be either a set of saddle (exit) points of the well, or a set of further (meta)stable configurations. Three types of results are reported: (1) A general theory is developed, based on the path-wise approach to metastability, which has three important attributes. First, it is general in that it does not assume reversibility of the process, does not focus only on hitting times to rare events and does not assume a particular starting measure. Second, it relies only on the natural hypothesis that the mean hitting time to GG is asymptotically longer than the mean recurrence time to x0x_0 or GG. Third, despite its mathematical simplicity, the approach yields precise and explicit bounds on the corrections to exponentiality. (2) We compare and relate different metastability conditions proposed in the literature so to eliminate potential sources of confusion. This is specially relevant for evolutions of infinite-volume systems, whose treatment depends on whether and how relevant parameters (temperature, fields) are adjusted. (3) We introduce the notion of early asymptotic exponential behavior to control time scales asymptotically smaller than the mean-time scale. This control is particularly relevant for systems with unbounded state space where nucleations leading to exit from metastability can happen anywhere in the volume. We provide natural sufficient conditions on recurrence times for this early exponentiality to hold and show that it leads to estimations of probability density functions

    Mathematical System Theory and System Modeling

    Get PDF
    Choosing models related effectively to the questions to be addressed is a central issue in the craft of systems analysis. Since the mathematical description the analyst chooses constrains the types of issues he candeal with, it is important for these models to be selected so as to yield limitations that are acceptable in view of the questions the systems analysis seeks to answer. In this paper, the author gives an overview of the central issues affecting the question of model choice. To this end, he discusses model components and a wide variety of possible mathematical system descriptions. After discussing both local and global aspects of these model types, headdresses basic questions and perspectives of system theory. The paper concludes with a sketch of a systematic response to the question: What model to choose? To provide a thorough overview of systems analysis, the International Institute for Applied Systems Analysis is preparing a "Handbook of Systems Analysis" in three volumes: Volume 1, "Overview;" Volume 2, "Methods;" Volume 3, "Cases." This essay is a contribution to the second volume of this Handbook

    Ordered Rings and Fields

    Get PDF
    We introduce ordered rings and fields following Artin-Schreier’s approach using positive cones. We show that such orderings coincide with total order relations and give examples of ordered (and non ordered) rings and fields. In particular we show that polynomial rings can be ordered in (at least) two different ways [8, 5, 4, 9]. This is the continuation of the development of algebraic hierarchy in Mizar [2, 3].Schwarzweller Christoph - Institute of Informatics, University of Gdansk, Gdansk, PolandGrzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191-198, 2015.Adam Grabowski, Artur Korniłowicz, and Christoph Schwarzweller. On algebraic hierarchies in mathematical repository of Mizar. In M. Ganzha, L. Maciaszek, and M. Paprzycki, editors, Proceedings of the 2016 Federated Conference on Computer Science and Information Systems (FedCSIS), volume 8 of Annals of Computer Science and Information Systems, pages 363-371, 2016.Nathan Jacobson. Lecture Notes in Abstract Algebra, III. Theory of Fields and Galois Theory. Springer-Verlag, 1964.Manfred Knebusch and Claus Scheiderer. Einf¨uhrung in die reelle Algebra. Vieweg-Verlag, 1989.Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5): 841-845, 1990.Eugeniusz Kusak, Wojciech Leonczuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.Alexander Prestel. Lectures on Formally Real Fields. Springer-Verlag, 1984.Knut Radbruch. Geordnete K¨orper. Lecture Notes, University of Kaiserslautern, Germany, 1991.Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990

    Formalization of Quasilattices

    Get PDF
    The main aim of this article is to introduce formally one of the generalizations of lattices, namely quasilattices, which can be obtained from the axiomatization of the former class by certain weakening of ordinary absorption laws. We show propositions QLT-1 to QLT-7 from [15], presenting also some short variants of corresponding axiom systems. Some of the results were proven in the Mizar [1], [2] system with the help of Prover9 [14] proof assistant.Dominik Kulesza - Institute of Informatics, University of Białystok, PolandAdam Grabowski - Institute of Informatics, University of Białystok, PolandGrzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.Garrett Birkhoff. Lattice Theory. Providence, Rhode Island, New York, 1967.B.A. Davey and H.A. Priestley. Introduction to Lattices and Order. Cambridge University Press, 2002.G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott. A Compendium of Continuous Lattices. Springer-Verlag, Berlin, Heidelberg, New York, 1980.Adam Grabowski. Mechanizing complemented lattices within Mizar system. Journal of Automated Reasoning, 55:211–221, 2015. doi:10.1007/s10817-015-9333-5.Adam Grabowski and Robert Milewski. Boolean posets, posets under inclusion and products of relational structures. Formalized Mathematics, 6(1):117–121, 1997.Adam Grabowski and Markus Moschner. Managing heterogeneous theories within a mathematical knowledge repository. In Andrea Asperti, Grzegorz Bancerek, and Andrzej Trybulec, editors, Mathematical Knowledge Management Proceedings, volume 3119 of Lecture Notes in Computer Science, pages 116–129. Springer, 2004. doi:10.1007/978-3-540-27818-4_9. 3rd International Conference on Mathematical Knowledge Management, Bialowieza, Poland, Sep. 19–21, 2004.Adam Grabowski and Damian Sawicki. On two alternative axiomatizations of lattices by McKenzie and Sholander. Formalized Mathematics, 26(2):193–198, 2018. doi:10.2478/forma-2018-0017.Adam Grabowski and Christoph Schwarzweller. Translating mathematical vernacular into knowledge repositories. In Michael Kohlhase, editor, Mathematical Knowledge Management, volume 3863 of Lecture Notes in Computer Science, pages 49–64. Springer, 2006. doi:https://doi.org/10.1007/11618027_4. 4th International Conference on Mathematical Knowledge Management, Bremen, Germany, MKM 2005, July 15–17, 2005, Revised Selected Papers.Adam Grabowski, Artur Korniłowicz, and Christoph Schwarzweller. Equality in computer proof-assistants. In Ganzha, Maria and Maciaszek, Leszek and Paprzycki, Marcin, editor, Proceedings of the 2015 Federated Conference on Computer Science and Information Systems, volume 5 of ACSIS-Annals of Computer Science and Information Systems, pages 45–54. IEEE, 2015. doi:10.15439/2015F229.George Grätzer. General Lattice Theory. Academic Press, New York, 1978.George Grätzer. Lattice Theory: Foundation. Birkhäuser, 2011.William McCune. Prover9 and Mace4. 2005–2010.William McCune and Ranganathan Padmanabhan. Automated Deduction in Equational Logic and Cubic Curves. Springer-Verlag, Berlin, 1996.Ranganathan Padmanabhan and Sergiu Rudeanu. Axioms for Lattices and Boolean Algebras. World Scientific Publishers, 2008.Piotr Rudnicki and Josef Urban. Escape to ATP for Mizar. In First International Workshop on Proof eXchange for Theorem Proving-PxTP 2011, 2011.Stanisław Żukowski. Introduction to lattice theory. Formalized Mathematics, 1(1):215–222, 1990.28221722

    On Weakly Associative Lattices and Near Lattices

    Get PDF
    The main aim of this article is to introduce formally two generalizations of lattices, namely weakly associative lattices and near lattices, which can be obtained from the former by certain weakening of the usual well-known axioms. We show selected propositions devoted to weakly associative lattices and near lattices from Chapter 6 of [15], dealing also with alternative versions of classical axiomatizations. Some of the results were proven in the Mizar [1], [2] system with the help of Prover9 [14] proof assistant.Damian Sawicki - Institute of Informatics, University of Białystok, PolandAdam Grabowski - Institute of Informatics, University of Białystok, PolandGrzegorz Bancerek, Czesław Bylinski, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.Grzegorz Bancerek, Czesław Bylinski, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pak. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.Garrett Birkhoff. Lattice Theory. Providence, Rhode Island, New York, 1967.B.A. Davey and H.A. Priestley. Introduction to Lattices and Order. Cambridge University Press, 2002.Ervin Fried and George Grätzer. Some examples of weakly associative lattices. Colloquium Mathematicum, 27:215–221, 1973. doi:10.4064/cm-27-2-215-221.Adam Grabowski. Mechanizing complemented lattices within Mizar system. Journal of Automated Reasoning, 55:211–221, 2015. doi:10.1007/s10817-015-9333-5.Adam Grabowski and Markus Moschner. Managing heterogeneous theories within a mathematical knowledge repository. In Andrea Asperti, Grzegorz Bancerek, and Andrzej Trybulec, editors, Mathematical Knowledge Management Proceedings, volume 3119 of Lecture Notes in Computer Science, pages 116–129. Springer, 2004. doi:10.1007/978-3-540-27818-4_9. 3rd International Conference on Mathematical Knowledge Management, Bialowieza, Poland, Sep. 19–21, 2004.Adam Grabowski and Damian Sawicki. On two alternative axiomatizations of lattices by McKenzie and Sholander. Formalized Mathematics, 26(2):193–198, 2018. doi:10.2478/forma-2018-0017.Adam Grabowski and Christoph Schwarzweller. Translating mathematical vernacular into knowledge repositories. In Michael Kohlhase, editor, Mathematical Knowledge Management, volume 3863 of Lecture Notes in Computer Science, pages 49–64. Springer, 2006. doi:https://doi.org/10.1007/11618027 4. 4th International Conference on Mathematical Knowledge Management, Bremen, Germany, MKM 2005, July 15–17, 2005, Revised Selected Papers.Adam Grabowski, Artur Korniłowicz, and Christoph Schwarzweller. Equality in computer proof-assistants. In Ganzha, Maria and Maciaszek, Leszek and Paprzycki, Marcin, editor, Proceedings of the 2015 Federated Conference on Computer Science and Information Systems, volume 5 of ACSIS-Annals of Computer Science and Information Systems, pages 45–54. IEEE, 2015. doi:10.15439/2015F229.George Grätzer. General Lattice Theory. Academic Press, New York, 1978.George Grätzer. Lattice Theory: Foundation. Birkhäuser, 2011.Dominik Kulesza and Adam Grabowski. Formalization of quasilattices. Formalized Mathematics, 28(2):217–225, 2020. doi:10.2478/forma-2020-0019.William McCune. Prover9 and Mace4. 2005–2010.William McCune and Ranganathan Padmanabhan. Automated Deduction in Equational Logic and Cubic Curves. Springer-Verlag, Berlin, 1996.Ranganathan Padmanabhan and Sergiu Rudeanu. Axioms for Lattices and Boolean Algebras. World Scientific Publishers, 2008.Piotr Rudnicki and Josef Urban. Escape to ATP for Mizar. In First International Workshop on Proof eXchange for Theorem Proving-PxTP 2011, 2011.Stanisław Zukowski. Introduction to lattice theory. Formalized Mathematics, 1(1):215–222, 1990.292778

    Thermodynamic Limit in Statistical Physics

    Full text link
    The thermodynamic limit in statistical thermodynamics of many-particle systems is an important but often overlooked issue in the various applied studies of condensed matter physics. To settle this issue, we review tersely the past and present disposition of thermodynamic limiting procedure in the structure of the contemporary statistical mechanics and our current understanding of this problem. We pick out the ingenious approach by N. N. Bogoliubov, who developed a general formalism for establishing of the limiting distribution functions in the form of formal series in powers of the density. In that study he outlined the method of justification of the thermodynamic limit when he derived the generalized Boltzmann equations. To enrich and to weave our discussion, we take this opportunity to give a brief survey of the closely related problems, such as the equipartition of energy and the equivalence and nonequivalence of statistical ensembles. The validity of the equipartition of energy permits one to decide what are the boundaries of applicability of statistical mechanics. The major aim of this work is to provide a better qualitative understanding of the physical significance of the thermodynamic limit in modern statistical physics of the infinite and "small" many-particle systems.Comment: 28 pages, Refs.180. arXiv admin note: text overlap with arXiv:1011.2981, arXiv:0812.0943 by other author
    • …
    corecore