33 research outputs found

    Mathematical morphology on tensor data using the Loewner ordering

    Get PDF
    The notions of maximum and minimum are the key to the powerful tools of greyscale morphology. Unfortunately these notions do not carry over directly to tensor-valued data. Based upon the Loewner ordering for symmetric matrices this paper extends the maximum and minimum operation to the tensor-valued setting. This provides the ground to establish matrix-valued analogues of the basic morphological operations ranging from erosion/dilation to top hats. In contrast to former attempts to develop a morphological machinery for matrices, the novel definitions of maximal/minimal matrices depend continuously on the input data, a property crucial for the construction of morphological derivatives such as the Beucher gradient or a morphological Laplacian. These definitions are rotationally invariant and preserve positive semidefiniteness of matrix fields as they are encountered in DT-MRI data. The morphological operations resulting from a component-wise maximum/minimum of the matrix channels disregarding their strong correlation fail to be rotational invariant. Experiments on DT-MRI images as well as on indefinite matrix data illustrate the properties and performance of our morphological operators

    Mathematical Morphology on Tensor Data Using the Loewner Ordering

    Get PDF
    The notions of maximum and minimum are the key to the powerful tools of greyscale morphology. Unfortunately these notions do not carry over directly to tensor-valued data. Based upon the Loewner ordering for symmetric matrices this paper extends the maximum and minimum operation to the tensor-valued setting. This provides the ground to establish matrix-valued analogues of the basic morphological operations ranging from erosion/dilation to top hats. In contrast to former attempts to develop a morphological machinery for matrices, the novel definitions of maximal/minimal matrices depend continuously on the input data, a property crucial for the construction of morphological derivatives such as the Beucher gradient or a morphological Laplacian. These definitions are rotationally invariant and preserve positive semidefiniteness of matrix fields as they are encountered in DT-MRI data. The morphological operations resulting from a component-wise maximum/minimum of the matrix channel

    Morphology for matrix data : ordering versus PDE-based approach

    Get PDF
    Matrix fields are becoming increasingly important in digital imaging. In order to perform shape analysis, enhancement or segmentation of such matrix fields, appropriate image processing tools must be developed. This paper extends fundamental morphological operations to the setting of matrices, in the literature sometimes referred to as tensors despite the fact that matrices are only rank two tensors. The goal of this paper is to introduce and explore two approaches to mathematical morphology for matrix-valued data: One is based on a partial ordering, the other utilises nonlinear partial differential equations (PDEs). We start by presenting definitions for the maximum and minimum of a set of symmetric matrices since these notions are the cornerstones of the morphological operations. Our first approach is based on the Loewner ordering for symmetric matrices, and is in contrast to the unsatisfactory component-wise techniques. The notions of maximum and minimum deduced from the Loewner ordering satisfy desirable properties such as rotation invariance, preservation of positive semidefiniteness, and continuous dependence on the input data. These properties are also shared by the dilation and erosion processes governed by a novel nonlinear system of PDEs we are proposing for our second approach to morphology on matrix data. These PDEs are a suitable counterpart of the nonlinear equations known from scalar continuous-scale morphology. Both approaches incorporate information simultaneously from all matrix channels rather than treating them independently. In experiments on artificial and real medical positive semidefinite matrix-valued images we contrast the resulting notions of erosion, dilation, opening, closing, top hats, morphological derivatives, and shock filters stemming from these two alternatives. Using a ball shaped structuring element we illustrate the properties and performance of our ordering- or PDE-driven morphological operators for matrix-valued data

    Mathematical morphology for tensor data induced by the Loewner orderingin higher dimensions

    Get PDF
    Positive semidefinite matrix fields are becoming increasingly important in digital imaging. One reason for this tendency consists of the introduction of diffusion tensor magnetic resonance imaging (DTMRI). In order to perform shape analysis, enhancement or segmentation of such tensor fields, appropriate image processing tools must be developed. This paper extends fundamental morphological operations to the matrix-valued setting. We start by presenting novel definitions for the maximum and minimum of a set of matrices since these notions lie at the heart of the morphological operations. In contrast to naive approaches like the component-wise maximum or minimum of the matrix channels, our approach is based on the Loewner ordering for symmetric matrices. The notions of maximum and minimum deduced from this partial ordering satisfy desirable properties such as rotation invariance, preservation of positive semidefiniteness, and continuous dependence on the input data. We introduce erosion, dilation, opening, closing, top hats, morphological derivatives, shock filters, and mid-range filters for positive semidefinite matrix-valued images. These morphological operations incorporate information simultaneously from all matrix channels rather than treating them independently. Experiments on DT-MRI images with ball- and rod-shaped structuring elements illustrate the properties and performance of our morphological operators for matrix-valued data

    PDE-based morphology for matrix fields : numerical solution schemes

    Get PDF
    Tensor fields are important in digital imaging and computer vision. Hence there is a demand for morphological operations to perform e.g. shape analysis, segmentation or enhancement procedures. Recently, fundamental morphological concepts have been transferred to the setting of fields of symmetric positive definite matrices, which are symmetric rank two tensors. This has been achieved by a matrix-valued extension of the nonlinear morphological partial differential equations (PDEs) for dilation and erosion known for grey scale images. Having these two basic operations at our disposal, more advanced morphological operators such as top hats or morphological derivatives for matrix fields with symmetric, positive semidefinite matrices can be constructed. The approach realises a proper coupling of the matrix channels rather than treating them independently. However, from the algorithmic side the usual scalar morphological PDEs are transport equations that require special upwind-schemes or novel high-accuracy predictor-corrector approaches for their adequate numerical treatment. In this chapter we propose the non-trivial extension of these schemes to the matrix-valued setting by exploiting the special algebraic structure available for symmetric matrices. Furthermore we compare the performance and juxtapose the results of these novel matrix-valued high-resolution-type (HRT) numerical schemes by considering top hats and morphological derivatives applied to artificial and real world data sets

    Adaptive continuous-scale morphology for matrix fields

    Get PDF
    In this article we consider adaptive, PDE-driven morphological operations for 3D matrix fields arising e.g. in diffusion tensor magnetic resonance imaging (DT-MRI). The anisotropic evolution is steered by a matrix constructed from a structure tensor for matrix valued data. An important novelty is an intrinsically one-dimensional directional variant of the matrix-valued upwind schemes such as the Rouy-Tourin scheme. It enables our method to complete or enhance anisotropic structures effectively. A special advantage of our approach is that upwind schemes are utilised only in their basic one-dimensional version. No higher dimensional variants of the schemes themselves are required. Experiments with synthetic and real-world data substantiate the gap-closing and line-completing properties of the proposed method

    04172 Abstracts Collection -- Perspectives Workshop: Visualization and Image Processing of Tensor Fields

    Get PDF
    From 18.04.04 to 23.04.04, the Dagstuhl Seminar 04172 ``Perspectives Workshop: Visualization and Image Processing of Tensor Fields\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Generalized Morphology using Sponges

    Get PDF
    Mathematical morphology has traditionally been grounded in lattice theory. For non-scalar data lattices often prove too restrictive, however. In this paper we present a more general alternative, sponges, that still allows useful definitions of various properties and concepts from morphological theory. It turns out that some of the existing work on “pseudo-morphology” for non-scalar data can in fact be considered “proper” mathematical morphology in this new framework, while other work cannot, and that this correlates with how useful/intuitive some of the resulting operators are

    Median and related local filters for tensor-valued images

    Get PDF
    We develop a concept for the median filtering of tensor data. The main part of this concept is the definition of median for symmetric matrices. This definition is based on the minimisation of a geometrically motivated objective function which measures the sum of distances of a variable matrix to the given data matrices. This theoretically wellfounded concept fits into a context of similarly defined median filters for other multivariate data. Unlike some other approaches, we do not require by definition that the median has to be one of the given data values. Nevertheless, it happens so in many cases, equipping the matrix-valued median even with root signals similar to the scalar-valued situation. Like their scalar-valued counterparts, matrix-valued median filters show excellent capabilities for structure-preserving denoising. Experiments on diffusion tensor imaging, fluid dynamics and orientation estimation data are shown to demonstrate this. The orientation estimation examples give rise to a new variant of a robust adaptive structure tensor which can be compared to existing concepts. For the efficient computation of matrix medians, we present a convex programming framework. By generalising the idea of the matrix median filters, we design a variety of other local matrix filters. These include matrix-valued mid-range filters and, more generally, M-smoothers but also weighted medians and \alpha-quantiles. Mid-range filters and quantiles allow also interesting cross-links to fundamental concepts of matrix morphology
    corecore