170 research outputs found

    Editorial — Special Issue: ISMM 2019

    Get PDF
    This editorial presents the Special Issue dedicated to the conference ISMM 2019 and summarizes the articles published in this Special Issue

    Adaptive Methods for Point Cloud and Mesh Processing

    Get PDF
    Point clouds and 3D meshes are widely used in numerous applications ranging from games to virtual reality to autonomous vehicles. This dissertation proposes several approaches for noise removal and calibration of noisy point cloud data and 3D mesh sharpening methods. Order statistic filters have been proven to be very successful in image processing and other domains as well. Different variations of order statistics filters originally proposed for image processing are extended to point cloud filtering in this dissertation. A brand-new adaptive vector median is proposed in this dissertation for removing noise and outliers from noisy point cloud data. The major contributions of this research lie in four aspects: 1) Four order statistic algorithms are extended, and one adaptive filtering method is proposed for the noisy point cloud with improved results such as preserving significant features. These methods are applied to standard models as well as synthetic models, and real scenes, 2) A hardware acceleration of the proposed method using Microsoft parallel pattern library for filtering point clouds is implemented using multicore processors, 3) A new method for aerial LIDAR data filtering is proposed. The objective is to develop a method to enable automatic extraction of ground points from aerial LIDAR data with minimal human intervention, and 4) A novel method for mesh color sharpening using the discrete Laplace-Beltrami operator is proposed. Median and order statistics-based filters are widely used in signal processing and image processing because they can easily remove outlier noise and preserve important features. This dissertation demonstrates a wide range of results with median filter, vector median filter, fuzzy vector median filter, adaptive mean, adaptive median, and adaptive vector median filter on point cloud data. The experiments show that large-scale noise is removed while preserving important features of the point cloud with reasonable computation time. Quantitative criteria (e.g., complexity, Hausdorff distance, and the root mean squared error (RMSE)), as well as qualitative criteria (e.g., the perceived visual quality of the processed point cloud), are employed to assess the performance of the filters in various cases corrupted by different noisy models. The adaptive vector median is further optimized for denoising or ground filtering aerial LIDAR data point cloud. The adaptive vector median is also accelerated on multi-core CPUs using Microsoft Parallel Patterns Library. In addition, this dissertation presents a new method for mesh color sharpening using the discrete Laplace-Beltrami operator, which is an approximation of second order derivatives on irregular 3D meshes. The one-ring neighborhood is utilized to compute the Laplace-Beltrami operator. The color for each vertex is updated by adding the Laplace-Beltrami operator of the vertex color weighted by a factor to its original value. Different discretizations of the Laplace-Beltrami operator have been proposed for geometrical processing of 3D meshes. This work utilizes several discretizations of the Laplace-Beltrami operator for sharpening 3D mesh colors and compares their performance. Experimental results demonstrated the effectiveness of the proposed algorithms

    Extraction of Digital Terrain Models from Airborne Laser Scanning Data based on Transfer-Learning

    Get PDF
    With the rapid urbanization, timely and comprehensive urban thematic and topographic information is highly needed. Digital Terrain Models (DTMs), as one of unique urban topographic information, directly affect subsequent urban applications such as smart cities, urban microclimate studies, emergency and disaster management. Therefore, both the accuracy and resolution of DTMs define the quality of consequent tasks. Current workflows for DTM extraction vary in accuracy and resolution due to the complexity of terrain and off-terrain objects. Traditional filters, which rely on certain assumptions of surface morphology, insufficiently generalize complex terrain. Recent development in semantic labeling of point clouds has shed light on this problem. Under the semantic labeling context, DTM extraction can be viewed as a binary classification task. This study aims at developing a workflow for automated point-wise DTM extraction from Airborne Laser Scanning (ALS) point clouds using a transfer-learning approach on ResNet. The workflow consists of three parts: feature image generation, transfer learning using ResNet, and accuracy assessment. First, each point is transformed into a feature image based on its elevation differences with neighbouring points. Then, the feature images are classified into ground and non-ground using ResNet models. The ground points are extracted by remapping each feature image to its corresponding points. Lastly, the proposed workflow is compared with two traditional filters, namely the Progressive Morphological Filter (PMF) and the Progress TIN Densification (PTD). Results show that the proposed workflow establishes an advantageous accuracy of DTM extraction, which yields only 0.522% Type I error, 4.84% Type II error and 2.43% total error. In comparison, Type I, Type II and total error for PMF are 7.82%, 11.6%, and 9.48%, for PTD are 1.55%, 5.37%, and 3.22%, respectively. The root mean squared error of interpolated DTM of 1 m resolution is only 7.3 cm. Moreover, the use of pre-trained weights largely accelerated the training process and enabled the network to reach unprecedented accuracy even on a small amount of training set. Qualitative analysis is further conducted to investigate the reliability and limitations of the proposed workflow

    Buildings Detection in VHR SAR Images Using Fully Convolution Neural Networks

    Get PDF
    This paper addresses the highly challenging problem of automatically detecting man-made structures especially buildings in very high resolution (VHR) synthetic aperture radar (SAR) images. In this context, the paper has two major contributions: Firstly, it presents a novel and generic workflow that initially classifies the spaceborne TomoSAR point clouds − - generated by processing VHR SAR image stacks using advanced interferometric techniques known as SAR tomography (TomoSAR) − - into buildings and non-buildings with the aid of auxiliary information (i.e., either using openly available 2-D building footprints or adopting an optical image classification scheme) and later back project the extracted building points onto the SAR imaging coordinates to produce automatic large-scale benchmark labelled (buildings/non-buildings) SAR datasets. Secondly, these labelled datasets (i.e., building masks) have been utilized to construct and train the state-of-the-art deep Fully Convolution Neural Networks with an additional Conditional Random Field represented as a Recurrent Neural Network to detect building regions in a single VHR SAR image. Such a cascaded formation has been successfully employed in computer vision and remote sensing fields for optical image classification but, to our knowledge, has not been applied to SAR images. The results of the building detection are illustrated and validated over a TerraSAR-X VHR spotlight SAR image covering approximately 39 km2 ^2 − - almost the whole city of Berlin − - with mean pixel accuracies of around 93.84%Comment: Accepted publication in IEEE TGR

    Cybergis-enabled remote sensing data analytics for deep learning of landscape patterns and dynamics

    Get PDF
    Mapping landscape patterns and dynamics is essential to various scientific domains and many practical applications. The availability of large-scale and high-resolution light detection and ranging (LiDAR) remote sensing data provides tremendous opportunities to unveil complex landscape patterns and better understand landscape dynamics from a 3D perspective. LiDAR data have been applied to diverse remote sensing applications where large-scale landscape mapping is among the most important topics. While researchers have used LiDAR for understanding landscape patterns and dynamics in many fields, to fully reap the benefits and potential of LiDAR is increasingly dependent on advanced cyberGIS and deep learning approaches. In this context, the central goal of this dissertation is to develop a suite of innovative cyberGIS-enabled deep-learning frameworks for combining LiDAR and optical remote sensing data to analyze landscape patterns and dynamics with four interrelated studies. The first study demonstrates a high-accuracy land-cover mapping method by integrating 3D information from LiDAR with multi-temporal remote sensing data using a 3D deep-learning model. The second study combines a point-based classification algorithm and an object-oriented change detection strategy for urban building change detection using deep learning. The third study develops a deep learning model for accurate hydrological streamline detection using LiDAR, which has paved a new way of harnessing LiDAR data to map landscape patterns and dynamics at unprecedented computational and spatiotemporal scales. The fourth study resolves computational challenges in handling remote sensing big data and deep learning of landscape feature extraction and classification through a cutting-edge cyberGIS approach

    Semi-automated Generation of High-accuracy Digital Terrain Models along Roads Using Mobile Laser Scanning Data

    Get PDF
    Transportation agencies in many countries require high-accuracy (2-20 cm) digital terrain models (DTMs) along roads for various transportation related applications. Compared to traditional ground surveys and aerial photogrammetry, mobile laser scanning (MLS) has great potential for rapid acquisition of high-density and high-accuracy three-dimensional (3D) point clouds covering roadways. Such MLS point clouds can be used to generate high-accuracy DTMs in a cost-effective fashion. However, the large-volume, mixed-density and irregular-distribution of MLS points, as well as the complexity of the roadway environment, make DTM generation a very challenging task. In addition, most available software packages were originally developed for handling airborne laser scanning (ALS) point clouds, which cannot be directly used to process MLS point clouds. Therefore, methods and software tools to automatically generate DTMs along roads are urgently needed for transportation users. This thesis presents an applicable workflow to generate DTM from MLS point clouds. The entire strategy of DTM generation was divided into two main parts: removing non-ground points and interpolating ground points into gridded DTMs. First, a voxel-based upward growing algorithm was developed to effectively and accurately remove non-ground points. Then through a comparative study on four interpolation algorithms, namely Inverse Distance Weighted (IDW), Nearest Neighbour, Linear, and Natural Neighbours interpolation algorithms, the IDW interpolation algorithm was finally used to generate gridded DTMs due to its higher accuracy and higher computational efficiency. The obtained results demonstrated that the voxel-based upward growing algorithm is suitable for areas without steep terrain features. The average overall accuracy, correctness, and completeness values of this algorithm were 0.975, 0.980, and 0.986, respectively. In some cases, the overall accuracy can exceed 0.990. The results demonstrated that the semi-automated DTM generation method developed in this thesis was able to create DTMs with a centimetre-level grid size and 10 cm vertical accuracy using the MLS point clouds

    Detail Enhancing Denoising of Digitized 3D Models from a Mobile Scanning System

    Get PDF
    The acquisition process of digitizing a large-scale environment produces an enormous amount of raw geometry data. This data is corrupted by system noise, which leads to 3D surfaces that are not smooth and details that are distorted. Any scanning system has noise associate with the scanning hardware, both digital quantization errors and measurement inaccuracies, but a mobile scanning system has additional system noise introduced by the pose estimation of the hardware during data acquisition. The combined system noise generates data that is not handled well by existing noise reduction and smoothing techniques. This research is focused on enhancing the 3D models acquired by mobile scanning systems used to digitize large-scale environments. These digitization systems combine a variety of sensors – including laser range scanners, video cameras, and pose estimation hardware – on a mobile platform for the quick acquisition of 3D models of real world environments. The data acquired by such systems are extremely noisy, often with significant details being on the same order of magnitude as the system noise. By utilizing a unique 3D signal analysis tool, a denoising algorithm was developed that identifies regions of detail and enhances their geometry, while removing the effects of noise on the overall model. The developed algorithm can be useful for a variety of digitized 3D models, not just those involving mobile scanning systems. The challenges faced in this study were the automatic processing needs of the enhancement algorithm, and the need to fill a hole in the area of 3D model analysis in order to reduce the effect of system noise on the 3D models. In this context, our main contributions are the automation and integration of a data enhancement method not well known to the computer vision community, and the development of a novel 3D signal decomposition and analysis tool. The new technologies featured in this document are intuitive extensions of existing methods to new dimensionality and applications. The totality of the research has been applied towards detail enhancing denoising of scanned data from a mobile range scanning system, and results from both synthetic and real models are presented

    Toward knowledge-based automatic 3D spatial topological modeling from LiDAR point clouds for urban areas

    Get PDF
    Le traitement d'un très grand nombre de données LiDAR demeure très coûteux et nécessite des approches de modélisation 3D automatisée. De plus, les nuages de points incomplets causés par l'occlusion et la densité ainsi que les incertitudes liées au traitement des données LiDAR compliquent la création automatique de modèles 3D enrichis sémantiquement. Ce travail de recherche vise à développer de nouvelles solutions pour la création automatique de modèles géométriques 3D complets avec des étiquettes sémantiques à partir de nuages de points incomplets. Un cadre intégrant la connaissance des objets à la modélisation 3D est proposé pour améliorer la complétude des modèles géométriques 3D en utilisant un raisonnement qualitatif basé sur les informations sémantiques des objets et de leurs composants, leurs relations géométriques et spatiales. De plus, nous visons à tirer parti de la connaissance qualitative des objets en reconnaissance automatique des objets et à la création de modèles géométriques 3D complets à partir de nuages de points incomplets. Pour atteindre cet objectif, plusieurs solutions sont proposées pour la segmentation automatique, l'identification des relations topologiques entre les composants de l'objet, la reconnaissance des caractéristiques et la création de modèles géométriques 3D complets. (1) Des solutions d'apprentissage automatique ont été proposées pour la segmentation sémantique automatique et la segmentation de type CAO afin de segmenter des objets aux structures complexes. (2) Nous avons proposé un algorithme pour identifier efficacement les relations topologiques entre les composants d'objet extraits des nuages de points afin d'assembler un modèle de Représentation Frontière. (3) L'intégration des connaissances sur les objets et la reconnaissance des caractéristiques a été développée pour inférer automatiquement les étiquettes sémantiques des objets et de leurs composants. Afin de traiter les informations incertitudes, une solution de raisonnement automatique incertain, basée sur des règles représentant la connaissance, a été développée pour reconnaître les composants du bâtiment à partir d'informations incertaines extraites des nuages de points. (4) Une méthode heuristique pour la création de modèles géométriques 3D complets a été conçue en utilisant les connaissances relatives aux bâtiments, les informations géométriques et topologiques des composants du bâtiment et les informations sémantiques obtenues à partir de la reconnaissance des caractéristiques. Enfin, le cadre proposé pour améliorer la modélisation 3D automatique à partir de nuages de points de zones urbaines a été validé par une étude de cas visant à créer un modèle de bâtiment 3D complet. L'expérimentation démontre que l'intégration des connaissances dans les étapes de la modélisation 3D est efficace pour créer un modèle de construction complet à partir de nuages de points incomplets.The processing of a very large set of LiDAR data is very costly and necessitates automatic 3D modeling approaches. In addition, incomplete point clouds caused by occlusion and uneven density and the uncertainties in the processing of LiDAR data make it difficult to automatic creation of semantically enriched 3D models. This research work aims at developing new solutions for the automatic creation of complete 3D geometric models with semantic labels from incomplete point clouds. A framework integrating knowledge about objects in urban scenes into 3D modeling is proposed for improving the completeness of 3D geometric models using qualitative reasoning based on semantic information of objects and their components, their geometric and spatial relations. Moreover, we aim at taking advantage of the qualitative knowledge of objects in automatic feature recognition and further in the creation of complete 3D geometric models from incomplete point clouds. To achieve this goal, several algorithms are proposed for automatic segmentation, the identification of the topological relations between object components, feature recognition and the creation of complete 3D geometric models. (1) Machine learning solutions have been proposed for automatic semantic segmentation and CAD-like segmentation to segment objects with complex structures. (2) We proposed an algorithm to efficiently identify topological relationships between object components extracted from point clouds to assemble a Boundary Representation model. (3) The integration of object knowledge and feature recognition has been developed to automatically obtain semantic labels of objects and their components. In order to deal with uncertain information, a rule-based automatic uncertain reasoning solution was developed to recognize building components from uncertain information extracted from point clouds. (4) A heuristic method for creating complete 3D geometric models was designed using building knowledge, geometric and topological relations of building components, and semantic information obtained from feature recognition. Finally, the proposed framework for improving automatic 3D modeling from point clouds of urban areas has been validated by a case study aimed at creating a complete 3D building model. Experiments demonstrate that the integration of knowledge into the steps of 3D modeling is effective in creating a complete building model from incomplete point clouds

    A Method for detection and quantification of building damage using post-disaster LiDAR data

    Get PDF
    There is a growing need for rapid and accurate damage assessment following natural disasters, terrorist attacks, and other crisis situations. The use of light detection and ranging (LiDAR) data to detect and quantify building damage following a natural disaster was investigated in this research. Using LiDAR data collected by the Rochester Institute of Technology (RIT) just days after the January 12, 2010 Haiti earthquake, a set of processes was developed for extracting buildings in urban environments and assessing structural damage. Building points were separated from the rest of the point cloud using a combination of point classification techniques involving height, intensity, and multiple return information, as well as thresholding and morphological filtering operations. Damage was detected by measuring the deviation between building roof points and dominant planes found using a normal vector and height variance approach. The devised algorithms were incorporated into a Matlab graphical user interface (GUI), which guided the workflow and allowed for user interaction. The semi-autonomous tool ingests a discrete-return LiDAR point cloud of a post-disaster scene, and outputs a building damage map highlighting damaged and collapsed buildings. The entire approach was demonstrated on a set of six validation sites, carefully selected from the Haiti LiDAR data. A combined 85.6% of the truth buildings in all of the sites were detected, with a standard deviation of 15.3%. Damage classification results were evaluated against the Global Earth Observation - Catastrophe Assessment Network (GEO-CAN) and Earthquake Engineering Field Investigation Team (EEFIT) truth assessments. The combined overall classification accuracy for all six sites was 68.3%, with a standard deviation of 9.6%. Results were impacted by imperfect validation data, inclusion of non-building points, and very diverse environments, e.g., varying building types, sizes, and densities. Nevertheless, the processes exhibited significant potential for detecting buildings and assessing building-level damage

    Automatic segmentation and reconstruction of traffic accident scenarios from mobile laser scanning data

    Get PDF
    Virtual reconstruction of historic sites, planning of restorations and attachments of new building parts, as well as forest inventory are few examples of fields that benefit from the application of 3D surveying data. Originally using 2D photo based documentation and manual distance measurements, the 3D information obtained from multi camera and laser scanning systems realizes a noticeable improvement regarding the surveying times and the amount of generated 3D information. The 3D data allows a detailed post processing and better visualization of all relevant spatial information. Yet, for the extraction of the required information from the raw scan data and for the generation of useable visual output, time-consuming, complex user-based data processing is still required, using the commercially available 3D software tools. In this context, the automatic object recognition from 3D point cloud and depth data has been discussed in many different works. The developed tools and methods however, usually only focus on a certain kind of object or the detection of learned invariant surface shapes. Although the resulting methods are applicable for certain practices of data segmentation, they are not necessarily suitable for arbitrary tasks due to the varying requirements of the different fields of research. This thesis presents a more widespread solution for automatic scene reconstruction from 3D point clouds, targeting street scenarios, specifically for the task of traffic accident scene analysis and documentation. The data, obtained by sampling the scene using a mobile scanning system is evaluated, segmented, and finally used to generate detailed 3D information of the scanned environment. To realize this aim, this work adapts and validates various existing approaches on laser scan segmentation regarding the application on accident relevant scene information, including road surfaces and markings, vehicles, walls, trees and other salient objects. The approaches are therefore evaluated regarding their suitability and limitations for the given tasks, as well as for possibilities concerning the combined application together with other procedures. The obtained knowledge is used for the development of new algorithms and procedures to allow a satisfying segmentation and reconstruction of the scene, corresponding to the available sampling densities and precisions. Besides the segmentation of the point cloud data, this thesis presents different visualization and reconstruction methods to achieve a wider range of possible applications of the developed system for data export and utilization in different third party software tools
    • …
    corecore