2,524 research outputs found

    Social Anchor: Privacy-Friendly Attribute Aggregation From Social Networks

    Get PDF
    In the last decade or so, we have experienced a tremendous proliferation and popularity of different Social Networks (SNs), resulting more and more user attributes being stored in such SNs. These attributes represent a valuable asset and many innovative online services are offered in exchange of such attributes. This particular phenomenon has allured these social networks to act as Identity Providers (IdPs). However, the current setting unnecessarily imposes a restriction: a user can only release attributes from one single IdP in a single session, thereby, limiting the user to aggregate attributes from multiple IdPs within the same session. In addition, our analysis suggests that the manner by which attributes are released from these SNs is extremely privacy-invasive and a user has very limited control to exercise her privacy during this process. In this article, we present Social Anchor, a system for attribute aggregation from social networks in a privacy-friendly fashion. Our proposed Social Anchor system effectively addresses both of these serious issues. Apart from the proposal, we have implemented Social Anchor following a set of security and privacy requirements. We have also examined the associated trust issues using a formal trust analysis model. Besides, we have presented a formal analysis of its protocols using a state-of-the-art formal analysis tool called AVISPA to ensure the security of Social Anchor. Finally, we have provided a performance analysis of Social Anchor

    A Novel Blockchain-based Trust Model for Cloud Identity Management

    Get PDF
    Secure and reliable management of identities has become one of the greatest challenges facing cloud computing today, mainly due to the huge number of new cloud-based applications generated by this model, which means more user accounts, passwords, and personal information to provision, monitor, and secure. Currently, identity federation is the most useful solution to overcome the aforementioned issues and simplify the user experience by allowing efficient authentication mechanisms and use of identity information from data distributed across multiple domains. However, this approach creates considerable complexity in managing trust relationships for both the cloud service providers and their clients. Poor management of trust in federated identity management systems brings with it many security, privacy and interoperability issues, which contributes to the reluctance of organizations to move their critical identity data to the cloud. In this paper, we aim to address these issues by introducing a novel trust and identity management model based on the Blockchain for cloud identity management with security and privacy improvements

    Security for network services delivery of 5G enabled device-to-device communications mobile network

    Get PDF
    The increase in mobile traffic led to the development of Fifth Generation (5G) mobile network. 5G will provide Ultra Reliable Low Latency Communication (URLLC), Massive Machine Type Communication (mMTC), enhanced Mobile Broadband (eMBB). Device-to-Device (D2D) communications will be used as the underlaying technology to offload traffic from 5G Core Network (5GC) and push content closer to User Equipment (UE). It will be supported by a variety of Network Service (NS) such as Content-Centric Networking (CCN) that will provide access to other services and deliver content-based services. However, this raises new security and delivery challenges. Therefore, research was conducted to address the security issues in delivering NS in 5G enabled D2D communications network. To support D2D communications in 5G, this thesis introduces a Network Services Delivery (NSD) framework defining an integrated system model. It incorporates Cloud Radio Access Network (C-RAN) architecture, D2D communications, and CCN to support 5G’s objectives in Home Network (HN), roaming, and proximity scenarios. The research explores the security of 5G enabled D2D communications by conducting a comprehensive investigation on security threats. It analyses threats using Dolev Yao (DY) threat model and evaluates security requirements using a systematic approach based on X.805 security framework. Which aligns security requirements with network connectivity, service delivery, and sharing between entities. This analysis highlights the need for security mechanisms to provide security to NSD in an integrated system, to specify these security mechanisms, a security framework to address the security challenges at different levels of the system model is introduced. To align suitable security mechanisms, the research defines underlying security protocols to provide security at the network, service, and D2D levels. This research also explores 5G authentication protocols specified by the Third Generation Partnership Project (3GPP) for securing communication between UE and HN, checks the security guarantees of two 3GPP specified protocols, 5G-Authentication and Key Agreement (AKA) and 5G Extensive Authentication Protocol (EAP)-AKA’ that provide primary authentication at Network Access Security (NAC). The research addresses Service Level Security (SLS) by proposing Federated Identity Management (FIdM) model to integrate federated security in 5G, it also proposes three security protocols to provide secondary authentication and authorization of UE to Service Provider (SP). It also addresses D2D Service Security (DDS) by proposing two security protocols that secure the caching and sharing of services between two UEs in different D2D communications scenarios. All protocols in this research are verified for functional correctness and security guarantees using a formal method approach and semi-automated protocol verifier. The research conducts security properties and performance evaluation of the protocols for their effectiveness. It also presents how each proposed protocol provides an interface for an integrated, comprehensive security solution to secure communications for NSD in a 5G enabled D2D communications network. The main contributions of this research are the design and formal verification of security protocols. Performance evaluation is supplementary

    Security and Performance Verification of Distributed Authentication and Authorization Tools

    Get PDF
    Parallel distributed systems are widely used for dealing with massive data sets and high performance computing. Securing parallel distributed systems is problematic. Centralized security tools are likely to cause bottlenecks and introduce a single point of failure. In this paper, we introduce existing distributed authentication and authorization tools. We evaluate the quality of the security tools by verifying their security and performance. For security tool verification, we use process calculus and mathematical modeling languages. Casper, Communicating Sequential Process (CSP) and Failure Divergence Refinement (FDR) to test for security vulnerabilities, Petri nets and Karp Miller trees are used to find performance issues of distributed authentication and authorization methods. Kerberos, PERMIS, and Shibboleth are evaluated. Kerberos is a ticket based distributed authentication service, PERMIS is a role and attribute based distributed authorization service, and Shibboleth is an integration solution for federated single sign-on authentication. We find no critical security and performance issues

    Legal issues in clouds: towards a risk inventory.

    Get PDF
    Cloud computing technologies have reached a high level of development, yet a number of obstacles still exist that must be overcome before widespread commercial adoption can become a reality. In a cloud environment, end users requesting services and cloud providers negotiate service-level agreements (SLAs) that provide explicit statements of all expectations and obligations of the participants. If cloud computing is to experience widespread commercial adoption, then incorporating risk assessment techniques is essential during SLA negotiation and service operation. This article focuses on the legal issues surrounding risk assessment in cloud computing. Specifically, it analyses risk regarding data protection and security, and presents the requirements of an inherent risk inventory. The usefulness of such a risk inventory is described in the context of the OPTIMIS project

    Technological, organisational, and environmental factors affecting the adoption of blockchain-based distributed identity management in organisations

    Get PDF
    Background: Blockchain is a disruptive technology with the potential to innovate businesses. Ignoring or resisting it might result in a competitive disadvantage for organisations. Apart from its original financial application of cryptocurrency, other applications are emerging, the most common being supply chain management and e-voting systems. However, there is less focus on information and cybersecurity applications, especially from the enterprise perspective. This research addresses this knowledge gap, focussing on its application of distributed identity management in organisations. Objectives: The main objective is to investigate technological, organisational, and environmental (TOE) factors affecting the adoption of blockchain-based distributed identity management (BDIDM) in organisations to determine the most critical factors. Secondary objectives include determining whether the blockchain type affects BDIDM adoption and whether the TOE-BDIDM model measuring the phenomenon is effective and appropriate. But given the relative newness of blockchain, the initial goal consists of intensively exploring the topic to understand the practicality of adopting BDIDM in organisations and establishing whether claims made around it are factual than just due to the blockchain hype. Methodology: The study uses meta-synthesis to explore the topic, summarising 69 papers selected qualitatively from reputed academic sources. The study then surveys 111 information and cybersecurity practitioners selected randomly in South African organisations to investigate the TOE factors affecting BDIDM adoption. To do so, it utilises an online questionnaire rooted in an adapted TOE model called TOE-BDIDM as a data collection instrument. The analysis of this primary data is purely quantitative and includes (i) Structural Equation Modelling (SEM) of the measurement model, i.e. confirmatory factor analysis (CFA); (ii) binary logistics regression analysis; and (iii) Chi-Square tests Results: Meta-synthesis revealed theoretical grounds underlying claims made around the topic while spotting diverging views about BDIDM practicality for the enterprise context. It also identifies the TOE theory as more suitable to explain the phenomenon. Binary logistics regression modelling reveals that TOE factors do affect BDIDM adoption in organisations, either positively or negatively. The factors predict BDIDM adopters and non-adopters, with Technology Characteristics being the most critical factor and the most that could predict BDIDM non-adopters. Organisation Readiness was the second critical factor, the most that could predict BDIDM adopters. Overall, TOE-BDIDM effectively predicted 92.5% of adopters and 45.2% of non-adopters. CFA indicates that TOE-BDIDM appropriateness for investigating the phenomenon is relatively fair. The Chi-Square tests reveal a significant association between Blockchain Type and BDIDM adoption. Implications: The discussion highlights various implications of the above findings, including the plausibility of the impartiality of typical privacy-preserving BDIDM models like the Selfsovereign identity: The majority of respondents preferred private permissioned blockchain, which tends to be centralised, more intermediated, and less privacy-preserving. The rest implications relate to the disruptiveness nature of BDIDM and the BDIDM adoption being more driven by technological than organisational or environmental factors. The study ends by reflecting on the research process and providing fundamental limitations and recommendations for future researc

    Contributions to the privacy provisioning for federated identity management platforms

    Get PDF
    Identity information, personal data and user’s profiles are key assets for organizations and companies by becoming the use of identity management (IdM) infrastructures a prerequisite for most companies, since IdM systems allow them to perform their business transactions by sharing information and customizing services for several purposes in more efficient and effective ways. Due to the importance of the identity management paradigm, a lot of work has been done so far resulting in a set of standards and specifications. According to them, under the umbrella of the IdM paradigm a person’s digital identity can be shared, linked and reused across different domains by allowing users simple session management, etc. In this way, users’ information is widely collected and distributed to offer new added value services and to enhance availability. Whereas these new services have a positive impact on users’ life, they also bring privacy problems. To manage users’ personal data, while protecting their privacy, IdM systems are the ideal target where to deploy privacy solutions, since they handle users’ attribute exchange. Nevertheless, current IdM models and specifications do not sufficiently address comprehensive privacy mechanisms or guidelines, which enable users to better control over the use, divulging and revocation of their online identities. These are essential aspects, specially in sensitive environments where incorrect and unsecured management of user’s data may lead to attacks, privacy breaches, identity misuse or frauds. Nowadays there are several approaches to IdM that have benefits and shortcomings, from the privacy perspective. In this thesis, the main goal is contributing to the privacy provisioning for federated identity management platforms. And for this purpose, we propose a generic architecture that extends current federation IdM systems. We have mainly focused our contributions on health care environments, given their particularly sensitive nature. The two main pillars of the proposed architecture, are the introduction of a selective privacy-enhanced user profile management model and flexibility in revocation consent by incorporating an event-based hybrid IdM approach, which enables to replace time constraints and explicit revocation by activating and deactivating authorization rights according to events. The combination of both models enables to deal with both online and offline scenarios, as well as to empower the user role, by letting her to bring together identity information from different sources. Regarding user’s consent revocation, we propose an implicit revocation consent mechanism based on events, that empowers a new concept, the sleepyhead credentials, which is issued only once and would be used any time. Moreover, we integrate this concept in IdM systems supporting a delegation protocol and we contribute with the definition of mathematical model to determine event arrivals to the IdM system and how they are managed to the corresponding entities, as well as its integration with the most widely deployed specification, i.e., Security Assertion Markup Language (SAML). In regard to user profile management, we define a privacy-awareness user profile management model to provide efficient selective information disclosure. With this contribution a service provider would be able to accesses the specific personal information without being able to inspect any other details and keeping user control of her data by controlling who can access. The structure that we consider for the user profile storage is based on extensions of Merkle trees allowing for hash combining that would minimize the need of individual verification of elements along a path. An algorithm for sorting the tree as we envision frequently accessed attributes to be closer to the root (minimizing the access’ time) is also provided. Formal validation of the above mentioned ideas has been carried out through simulations and the development of prototypes. Besides, dissemination activities were performed in projects, journals and conferences.Programa Oficial de Doctorado en Ingeniería TelemáticaPresidente: María Celeste Campo Vázquez.- Secretario: María Francisca Hinarejos Campos.- Vocal: Óscar Esparza Martí

    Identity Management Framework for Internet of Things

    Get PDF
    • …
    corecore