7 research outputs found

    Dissecting RNA biology in hematopoietic stem cells: The long non-coding RNA Meg3 is dispensable for hematopoiesis and alternative polyadenylation orchestrates hematopoietic stem cell function

    Get PDF
    Hematopoietic stem cells (HSCs) reside at the top of a tightly regulated and hierarchically organized differentiation cascade. They are multipotent and able to self-renew, thereby ensuring life-long replenishment of mature blood cells. In-depth Omics analyses within the hematopoietic hierarchy, including analysis of HSCs and multipotent progenitor (MPP) cells, revealed not only differential expression of protein-coding genes, but also HSC-specific splicing variants and expression of long non-coding RNAs (lncRNAs) upon HSC commitment (Cabezas-Wallscheid et al., 2014; Klimmeck et al., 2014; Luo et al., 2015). Functional analyses revealed that non-coding RNAs and regulation of RNA biogenesis are crucial for HSC function and potency. In this thesis, the role of the lncRNA maternally expressed gene 3 (Meg3) in hematopoiesis is studied. In addition, I introduce the RNA regulatory mechanism alternative polyadenylation (APA) as a mechanism controlling HSC/MPP biology in homeostasis and during replicative stress response by extensive in silico, in vitro and in vivo analyses. Furthermore, I generated an inducible knockout mouse model, targeting the prominent APA regulator poly(A) binding protein 1 (Pabpn1). Thereby, I aimed to dissect the general role of lncRNAs and RNA regulatory mechanisms in hematopoiesis. Project 1: The role of the lncRNA Meg3 in HSCs The tumor suppressor lncRNA Meg3 is encoded in the imprinted Dlk1-Meg3 locus and expressed from the maternally inherited allele (Zhou et al., 2012). We and others found Meg3 to be highly and specifically expressed in the HSC compartment compared to MPP cells. In this thesis, I crossed an inducible Meg3 flox mouse model (Klibanski et al., unpublished) to MxCre mice, generating MxCre Meg3 mat flox/pat wt mice. Cre-induction deleted the maternal allele in the hematopoietic compartment and thereby completely abrogated the expression of Meg3 and its associated miRNA cluster in HSCs. Extensive in vivo and in vitro analyses of adult mice harboring a Meg3-deficient blood system surprisingly did not reveal any impairment of hematopoiesis or stem cell function. In addition, I performed serial transplantation assays to investigate the functional capacity of Meg3-deficient HSCs. Again, knockout cells did not exhibit altered blood contribution, even upon tertiary transplantation. Imprinting of the Dlk1- Meg3 locus has recently been reported to regulate fetal liver HSC function (Qian et al., 2016). To analyze effects of the hematopoiesis-specific Meg3 knockout in the developing embryo, we generated VavCre Meg3 mat flox/pat wt mice. Cre+ offspring were born and developed normally. In- depth analysis of adult animals revealed loss of Meg3 expression in HSCs, but again no hematopoietic impairments were detected. Next, I performed interferon-mediated stimulation in MxCre Meg3 mat flox/pat wt mice. During both activation and recovery phase, Meg3-deficient adult HSCs responded highly similar compared to controls. Taken together, my work shows that the highly expressed, imprinted lncRNA Meg3 is dispensable for the function of HSCs during adulthood and embryonic development. In the adult system, loss of Meg3 does not impair the performance in serial reconstitution assays or response to stress mediators. (Sommerkamp et al., 2019) Project 2: HSC function, differentiation and activation are regulated by APA The majority of mammalian genes have multiple different polyadenylation sites. The RNA editing mechanism APA controls the selection of these sites, thereby altering 3’-UTR length and isoform expression. Thus, APA modulates RNA stability, localization, protein output and even protein localization (Di Giammartino et al., 2011; Tian and Manley, 2017). So far, the role of APA in the regulation of the adult HSC/MPP compartment has not been studied. In this thesis, I show that the APA regulator Pabpn1 is essential for HSCs, as knockdown (KD) of Pabpn1 led to decreased HSC function in vitro and in vivo. To analyze the prevalence of APA at the top of the hematopoietic hierarchy, I established an ultra-low input 3’-Seq approach and performed analysis of HSCs, MPP cells and HSCs activated by inflammation. Bioinformatic analysis revealed dynamic APA patterns in numerous genes between HSCs and MPPs as well as during inflammation-induced HSC stress response. We observed global 3’-UTR shortening both upon HSC differentiation towards MPPs and HSC activation. Further, 3’-Seq analysis of Pabpn1 KD cells revealed that PABPN1 regulates APA in the HSC/MPP compartment. We observed an APA-mediated glutaminase (Gls) isoform switch upon exit of HSCs from quiescence. Gls isoform switching led to enhanced relative expression of the highly active GLS GAC isoform and overall increased GLS protein levels. In line, small molecule-mediated inhibition of glutaminolysis in vitro enhanced HSC maintenance by limiting proliferation. I could show that Gls isoform switching leading to increased glutaminolysis is mediated by the APA regulator NUDT21 and in turn is required for proper HSC function. KD of Nudt21 led to inhibition of Gls isoform switching, impaired HSC function and a partial block in HSC differentiation. In summary, my results install differential employment of APA and associated glutamine metabolism adaptations as novel layers in the regulation of the HSC-controlled hematopoietic hierarchy. (Sommerkamp et al., under revision) Project 3: Generation of Pabpn1flox mice To enable in-depth in vivo analysis of the role of APA in different tissues and disease settings in the future, we generated an inducible Pabpn1flox mouse model. Here, we used the Easi- CRISPR approach (Miura et al., 2018; Quadros et al., 2017) to generate transgenic animals. I performed extensive in vitro testing of various guide RNAs (gRNAs) to optimize recombination efficiency in vivo. Two different crRNA-tracrRNA:Cas9 complexes targeting upstream and downstream genomic regions, respectively, were injected into one of the pronuclei of zygotes together with a long single-stranded DNA (ssDNA) template. By extensive genotyping, I identified 3 of 17 offspring animals to be correctly targeted. Homozygous offspring mice were successfully bred and can be used in the future to determine functionality of the Pabpn1flox mouse model and to functionally asses the role of APA in different biological settings

    THE MECHANISM OF CYTOKINE SYNERGY INDUCED BY COMBINATORIAL TLR ACTIVATION

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    PTH1R Signaling in Osteoblasts Stimulated with Functionally Selective Ligands: Phosphoproteomics Reveals Unique Signaling Networks

    Get PDF
    The past 20 years have seen G-protein coupled receptor (GPCR) theory advance significantly. Receptors are now thought of as adopting multiple conformations in a state of dynamic equilibrium. The study of GPCR biased agonism has emerged from this changing concept of receptors and introduced the field to “pluridimensional efficacy.” It is thought that a single readout of efficacy is no longer sufficient and multiple parameters of efficacy must be measured in drug screens to improve the ability to predict in vivo effects. While several GPCRs have multiple cognate ligands that elicit functionally-selective responses, the present study focused on biased signaling of the parathyroid hormone receptor (PTH1R). Parathyroid hormone (PTH) maintains serum calcium and is a key regulator of bone remodeling. Human PTH1-34 (Forteo) is the only FDA approved drug used for treatment of osteoporosis that acts via its anabolic actions on osteoblasts. However, the therapeutic utilization of PTH1-34 is limited by its catabolic effects, mediated in part by protein kinase A, which after two years culminate in net bone resporption through the activation of osteoclasts by RANKL. The experimental, biased ligand of the PTH1R, bovine parathyroid hormone residues 7-34 with D-Trp12 and Tyr34 (bPTH(7-34)), does not exhibit the catabolic effects of PTH1-34. In vivo administration of the conventional ligand, PTH 1-34, and the biased ligand, bPTH(7-34), for eight weeks increased bone mineral density (BMD) in mice. The anabolic effect of bPTH(7-34) in vivo was lost in β-arrestin deficient mice, revealing a dependence on β-arrestin mediated signaling. Further analysis of osteoblast and osteoclast number, transcript expression, and the generation of second messengers revealed the anabolic effect of each ligand was achieved by different mechanisms. To elucidate the unique, proximal signaling events activated by acute stimulation of the PTH1R with the biased agonist, this study focused on characterization and comparison of the phosphorylation-mediated signaling profiles of osteoblasts stimulated with each osteogenic agonist. Relative changes in phosphorylation were measured using a SILAC-based phosphoproteomic screen following acute stimulation of MC3T3- E1 preosteoblast cells with hPTH(1-34) or bPTH(7-34) for 5 minutes. The experiments were performed in proliferating preosteoblasts (Day 0) and differentiating osteoblasts (Day 10). Over ten thousand sites of phosphorylation were observed. Regulated phosphosites and phosphoproteins were examined for putative kinase activity, targeted signaling pathways, and biological processes. Differences were observed in the kinases stimulated by each agonist. For example, bPTH(7-34) treatment activated MAPK1 and increased phosphorylation of downstream substrates, while phosphorylation of predicted MAPK1 substrates were decreased with hPTH(1-34) activation. While both drugs regulated phosphorylation of proteins in signaling pathways involving GPCR signaling (PLC, MTOR, Rho GTPases); Ingenuity Pathway Analysis (IPA) also revealed discrete signaling networks engaged by each drug. PTH (1-34) treatment yielded regulated proteins involved in cytoskeletal dynamics and the Wnt/β- catenin pathway, whereas bPTH(7-34) treatment modulated pathways related to survival (ATM, CDKs, and p70S6K) and transcription (Jak/Stat, and PPARα). Cell-based assays confirmed hPTH(1-34) and bPTH(7-34) both confer resistance to etoposide-induced apoptosis and bPTH(7-34) increases proliferation in MC3T3-E1 cells. At the biological process level, both ligands modulated proteins involved in cell survival, migration, growth, and bone metabolism. Comparison of regulated phosphoproteins at two time points during osteogenic differentiation unexpectedly revealed that the bPTH(7-34) gave a more robust effect in proliferating preosteoblasts, whereas hPTH(1-34) stimulated more sites of phosphorylation in differentiating osteoblasts. This observation indicates the differential effects of each agonist may result from changes in signaling mediators that are expressed at these two time points. While the PTH receptor was present at both time points, β-arrestin was more highly expressed in proliferating preosteoblasts

    Plasticity in gene expression programmes of dendritic cells responding to antigens.

    Get PDF
    Dendritic cells (DCs) are professional antigen presenting cells whose function is to initiate and shape an appropriate adaptive immune response. This requires an ability to distinguish differences between whole pathogens, in order to orchestrate effective downstream immunological outcomes. However, cellular re-programming of DC functions during these events are not well understood. A paradigm of dendritic cell biology is that DCs have two modes of function that relate to their differentiation states. An immature DC functions as an immune sentinel, to monitor and interrogate its surroundings for pathogens. Encounter with such stimuli results in a process termed "maturation", where DCs acquire the properties of effective antigen presenting cells. However, this process of differentiation is complex. In this thesis, gene expression profiling of DCs exposed to pathogen components has revealed three distinct phases of maturation, with statistically significant expression of subsets of genes characterising these phases. Transcriptional regulation of the signalling pathways involving p38 and ERK MAP kinases important to DC function were identified. Specific inhibitors of p38 and ERK confirmed their differential role in DC maturation, with p38 activity being necessary for the initiation of DC maturation, whilst ERK activity persists to maintain DC survival. Concurrent with the core maturation process is the DCs' ability to differentially respond to pathogens. Gene expression analysis of DCs exposed to whole viruses supports the model of DC plasticity to different pathogenic stimuli. Using exploratory cluster analysis and a novel vector algebra method, core and pathogen-specific gene expression programmes were identified. The programmes involving the differential regulation of cytokines were confirmed at the transcript level and at the protein level. Together these data show that DCs mature to effective antigen presenting cells via an orchestrated pattern of at least three gene expression programmes. Superimposed on this core maturation response are pathogen-specific transcriptional programmes. Therefore, we conclude that DCs can translate different pathogenic stimuli into core DC maturation and pathogen-specific responses that together shape an appropriate adaptive immune response
    corecore