103,697 research outputs found

    Modeling of evolving textures using granulometries

    Get PDF
    This chapter describes a statistical approach to classification of dynamic texture images, called parallel evolution functions (PEFs). Traditional classification methods predict texture class membership using comparisons with a finite set of predefined texture classes and identify the closest class. However, where texture images arise from a dynamic texture evolving over time, estimation of a time state in a continuous evolutionary process is required instead. The PEF approach does this using regression modeling techniques to predict time state. It is a flexible approach which may be based on any suitable image features. Many textures are well suited to a morphological analysis and the PEF approach uses image texture features derived from a granulometric analysis of the image. The method is illustrated using both simulated images of Boolean processes and real images of corrosion. The PEF approach has particular advantages for training sets containing limited numbers of observations, which is the case in many real world industrial inspection scenarios and for which other methods can fail or perform badly. [41] G.W. Horgan, Mathematical morphology for analysing soil structure from images, European Journal of Soil Science, vol. 49, pp. 161ā€“173, 1998. [42] G.W. Horgan, C.A. Reid and C.A. Glasbey, Biological image processing and enhancement, Image Processing and Analysis, A Practical Approach, R. Baldock and J. Graham, eds., Oxford University Press, Oxford, UK, pp. 37ā€“67, 2000. [43] B.B. Hubbard, The World According to Wavelets: The Story of a Mathematical Technique in the Making, A.K. Peters Ltd., Wellesley, MA, 1995. [44] H. Iversen and T. Lonnestad. An evaluation of stochastic models for analysis and synthesis of gray-scale texture, Pattern Recognition Letters, vol. 15, pp. 575ā€“585, 1994. [45] A.K. Jain and F. Farrokhnia, Unsupervised texture segmentation using Gabor filters, Pattern Recognition, vol. 24(12), pp. 1167ā€“1186, 1991. [46] T. Jossang and F. Feder, The fractal characterization of rough surfaces, Physica Scripta, vol. T44, pp. 9ā€“14, 1992. [47] A.K. Katsaggelos and T. Chun-Jen, Iterative image restoration, Handbook of Image and Video Processing, A. Bovik, ed., Academic Press, London, pp. 208ā€“209, 2000. [48] M. KĀØoppen, C.H. Nowack and G. RĀØosel, Pareto-morphology for color image processing, Proceedings of SCIA99, 11th Scandinavian Conference on Image Analysis 1, Kangerlussuaq, Greenland, pp. 195ā€“202, 1999. [49] S. Krishnamachari and R. Chellappa, Multiresolution Gauss-Markov random field models for texture segmentation, IEEE Transactions on Image Processing, vol. 6(2), pp. 251ā€“267, 1997. [50] T. Kurita and N. Otsu, Texture classification by higher order local autocorrelation features, Proceedings of ACCV93, Asian Conference on Computer Vision, Osaka, pp. 175ā€“178, 1993. [51] S.T. Kyvelidis, L. Lykouropoulos and N. Kouloumbi, Digital system for detecting, classifying, and fast retrieving corrosion generated defects, Journal of Coatings Technology, vol. 73(915), pp. 67ā€“73, 2001. [52] Y. Liu, T. Zhao and J. Zhang, Learning multispectral texture features for cervical cancer detection, Proceedings of 2002 IEEE International Symposium on Biomedical Imaging: Macro to Nano, pp. 169ā€“172, 2002. [53] G. McGunnigle and M.J. Chantler, Modeling deposition of surface texture, Electronics Letters, vol. 37(12), pp. 749ā€“750, 2001. [54] J. McKenzie, S. Marshall, A.J. Gray and E.R. Dougherty, Morphological texture analysis using the texture evolution function, International Journal of Pattern Recognition and Artificial Intelligence, vol. 17(2), pp. 167ā€“185, 2003. [55] J. McKenzie, Classification of dynamically evolving textures using evolution functions, Ph.D. Thesis, University of Strathclyde, UK, 2004. [56] S.G. Mallat, Multiresolution approximations and wavelet orthonormal bases of L2(R), Transactions of the American Mathematical Society, vol. 315, pp. 69ā€“87, 1989. [57] S.G. Mallat, A theory for multiresolution signal decomposition: the wavelet representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, pp. 674ā€“693, 1989. [58] B.S. Manjunath and W.Y. Ma, Texture features for browsing and retrieval of image data, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 18, pp. 837ā€“842, 1996. [59] B.S. Manjunath, G.M. Haley and W.Y. Ma, Multiband techniques for texture classification and segmentation, Handbook of Image and Video Processing, A. Bovik, ed., Academic Press, London, pp. 367ā€“381, 2000. [60] G. Matheron, Random Sets and Integral Geometry, Wiley Series in Probability and Mathematical Statistics, John Wiley and Sons, New York, 1975

    A graph-based mathematical morphology reader

    Full text link
    This survey paper aims at providing a "literary" anthology of mathematical morphology on graphs. It describes in the English language many ideas stemming from a large number of different papers, hence providing a unified view of an active and diverse field of research

    Subspace methods for portfolio design

    Get PDF
    Financial signal processing (FSP) is one of the emerging areas in the field of signal processing. It is comprised of mathematical finance and signal processing. Signal processing engineers consider speech, image, video, and price of a stock as signals of interest for the given application. The information that they will infer from raw data is different for each application. Financial engineers develop new solutions for financial problems using their knowledge base in signal processing. The goal of financial engineers is to process the harvested financial signal to get meaningful information for the purpose. Designing investment portfolios have always been at the center of finance. An investment portfolio is comprised of financial instruments such as stocks, bonds, futures, options, and others. It is designed based on risk limits and return expectations of investors and managed by portfolio managers. Modern Portfolio Theory (MPT) offers a mathematical method for portfolio optimization. It defines the risk as the standard deviation of the portfolio return and provides closed-form solution for the risk optimization problem where asset allocations are derived from. The risk and the return of an investment are the two inseparable performance metrics. Therefore, risk normalized return, called Sharpe ratio, is the most widely used performance metric for financial investments. Subspace methods have been one of the pillars of functional analysis and signal processing. They are used for portfolio design, regression analysis and noise filtering in finance applications. Each subspace has its unique characteristics that may serve requirements of a specific application. For still image and video compression applications, Discrete Cosine Transform (DCT) has been successfully employed in transform coding where Karhunen-Loeve Transform (KLT) is the optimum block transform. In this dissertation, a signal processing framework to design investment portfolios is proposed. Portfolio theory and subspace methods are investigated and jointly treated. First, KLT, also known as eigenanalysis or principal component analysis (PCA) of empirical correlation matrix for a random vector process that statistically represents asset returns in a basket of instruments, is investigated. Auto-regressive, order one, AR(1) discrete process is employed to approximate such an empirical correlation matrix. Eigenvector and eigenvalue kernels of AR(1) process are utilized for closed-form expressions of Sharpe ratios and market exposures of the resulting eigenportfolios. Their performances are evaluated and compared for various statistical scenarios. Then, a novel methodology to design subband/filterbank portfolios for a given empirical correlation matrix by using the theory of optimal filter banks is proposed. It is a natural extension of the celebrated eigenportfolios. Closed-form expressions for Sharpe ratios and market exposures of subband/filterbank portfolios are derived and compared with eigenportfolios. A simple and powerful new method using the rate-distortion theory to sparse eigen-subspaces, called Sparse KLT (SKLT), is developed. The method utilizes varying size mid-tread (zero-zone) pdf-optimized (Lloyd-Max) quantizers created for each eigenvector (or for the entire eigenmatrix) of a given eigen-subspace to achieve the desired cardinality reduction. The sparsity performance comparisons demonstrate the superiority of the proposed SKLT method over the popular sparse representation algorithms reported in the literature

    Multiple feature-enhanced synthetic aperture radar imaging

    Get PDF
    Non-quadratic regularization based image formation is a recently proposed framework for feature-enhanced radar imaging. Specific image formation techniques in this framework have so far focused on enhancing one type of feature, such as strong point scatterers, or smooth regions. However, many scenes contain a number of such features. We develop an image formation technique that simultaneously enhances multiple types of features by posing the problem as one of sparse signal representation based on overcomplete dictionaries. Due to the complex-valued nature of the reflectivities in SAR, our new approach is designed to sparsely represent the magnitude of the complex-valued scattered field in terms of multiple features, which turns the image reconstruction problem into a joint optimization problem over the representation of the magnitude and the phase of the underlying field reflectivities. We formulate the mathematical framework needed for this method and propose an iterative solution for the corresponding joint optimization problem. We demonstrate the effectiveness of this approach on various SAR images
    • ā€¦
    corecore