55,518 research outputs found

    Research issues in data modeling for scientific visualization

    Get PDF
    This article summarizes some topics of modeling as they impinge on the future development of scientific data visualization. The benefits from visualization techniques in analyzing data are well established, but to build on these pioneering efforts, one must recognize modeling as a distinct structural component in the larger context of visualization and problem-solving systems. Volume modeling is the entry way to this arena of future development, and model-based rendering describes how scientists will view the results. Important side developments such as multiresolution modeling and model-based segmentation will contribute structural capability to these systems. All of these components ultimately depend on the mathematical foundations of scattered data modeling and on model validation and standards to incorporate this modeling methodology into effective tools for scientific inquiry.Postprint (published version

    Curriculum Guidelines for Undergraduate Programs in Data Science

    Get PDF
    The Park City Math Institute (PCMI) 2016 Summer Undergraduate Faculty Program met for the purpose of composing guidelines for undergraduate programs in Data Science. The group consisted of 25 undergraduate faculty from a variety of institutions in the U.S., primarily from the disciplines of mathematics, statistics and computer science. These guidelines are meant to provide some structure for institutions planning for or revising a major in Data Science

    Hypertiling -- a high performance Python library for the generation and visualization of hyperbolic lattices

    Full text link
    Hypertiling is a high-performance Python library for the generation and visualization of regular hyperbolic lattices embedded in the Poincar\'e disk model. Using highly optimized, efficient algorithms, hyperbolic tilings with millions of vertices can be created in a matter of minutes on a single workstation computer. Facilities including computation of adjacent vertices, dynamic lattice manipulation, refinements, as well as powerful plotting and animation capabilities are provided to support advanced uses of hyperbolic graphs. In this manuscript, we present a comprehensive exploration of the package, encompassing its mathematical foundations, usage examples, applications, and a detailed description of its implementation.Comment: 52 pages, 20 figure

    Veni Vidi Vici, A Three-Phase Scenario For Parameter Space Analysis in Image Analysis and Visualization

    Full text link
    Automatic analysis of the enormous sets of images is a critical task in life sciences. This faces many challenges such as: algorithms are highly parameterized, significant human input is intertwined, and lacking a standard meta-visualization approach. This paper proposes an alternative iterative approach for optimizing input parameters, saving time by minimizing the user involvement, and allowing for understanding the workflow of algorithms and discovering new ones. The main focus is on developing an interactive visualization technique that enables users to analyze the relationships between sampled input parameters and corresponding output. This technique is implemented as a prototype called Veni Vidi Vici, or "I came, I saw, I conquered." This strategy is inspired by the mathematical formulas of numbering computable functions and is developed atop ImageJ, a scientific image processing program. A case study is presented to investigate the proposed framework. Finally, the paper explores some potential future issues in the application of the proposed approach in parameter space analysis in visualization

    Predicativity and parametric polymorphism of Brouwerian implication

    Get PDF
    A common objection to the definition of intuitionistic implication in the Proof Interpretation is that it is impredicative. I discuss the history of that objection, argue that in Brouwer's writings predicativity of implication is ensured through parametric polymorphism of functions on species, and compare this construal with the alternative approaches to predicative implication of Goodman, Dummett, Prawitz, and Martin-L\"of.Comment: Added further references (Pistone, Poincar\'e, Tabatabai, Van Atten

    Understanding Visualization: A formal approach using category theory and semiotics

    Get PDF
    This article combines the vocabulary of semiotics and category theory to provide a formal analysis of visualization. It shows how familiar processes of visualization fit the semiotic frameworks of both Saussure and Peirce, and extends these structures using the tools of category theory to provide a general framework for understanding visualization in practice, including: relationships between systems, data collected from those systems, renderings of those data in the form of representations, the reading of those representations to create visualizations, and the use of those visualizations to create knowledge and understanding of the system under inspection. The resulting framework is validated by demonstrating how familiar information visualization concepts (such as literalness, sensitivity, redundancy, ambiguity, generalizability, and chart junk) arise naturally from it and can be defined formally and precisely. This article generalizes previous work on the formal characterization of visualization by, inter alia, Ziemkiewicz and Kosara and allows us to formally distinguish properties of the visualization process that previous work does not
    • …
    corecore