136,250 research outputs found

    Rigorous object-oriented analysis

    Get PDF
    Object-oriented methods for analysis, design and programming are commonly used by software engineers. Formal description techniques, however, are mainly used in a research environment. We have investigated how rigour can be introduced into the analysis phase of the software development process by combining object-oriented analysis (OOA) methods with formal description techniques. The main topics of this investigation are a formal interpretation of the OOA constructs using LOTOS, a mathematical definition of the basic OOA concepts using a simple denotational semantics and a new method for object- oriented analysis that we call the Rigorous Object-Oriented Analysis method (ROOA). The LOTOS interpretation of the OOA concepts is an intrinsic part of the ROOA method. It was designed in such a way that software engineers with no experience in LOTOS, can still use ROOA. The denotational semantics of the concepts of object-oriented analysis illuminates the formal syntactic transformations within ROOA and guarantees that the basic object- oriented concepts can be understood independently of the specification language we use. The ROOA method starts from a set of informal requirements and an object model and produces a formal object-oriented analysis model that acts as a requirements specification. The resulting formal model integrates the static, dynamic and functional properties of a system in contrast to existing OOA methods which are informal and produce three separate models that are difficult to integrate and keep consistent. ROOA provides a systematic development process, by proposing a set of rules to be followed during the analysis phase. During the application of these rules, auxiliary structures are created to help in tracing the requirements through to the final formal model. As LOTOS produces executable specifications, prototyping can be used to check the conformance of the specification against the original requirements and to detect inconsistencies, omissions and ambiguities early in the development process

    Comparison of numerical modelling of degradation sechanisms in single mode optical fibre using MATLAB and VPIphotonics

    Get PDF
    Mathematical models for description of physical phenomena often use the statistical description of the individual phenomena and solve those using suitable methods. If we want to develop numerical model of optical communication system based on transmission through single mode optical fibres, we need to consider whole series of phenomena that affect various parts of the system. In the single-mode optical fibre we often encounter influence of chromatic dispersion and nonlinear Kerr effects. By observing various different degradation mechanisms, every numerical model should have its own limits, which fulfil more detailed specification. It is inevitable to consider them in evaluation. In this paper, we focus on numerical modelling of degradation mechanisms in single-mode optical fibre. Numerical solution of non-linear Schroedinger equation is performed by finite difference method applied in MATLAB environment and split-step Fourier method, which is implemented by VPIphotonics software

    Complex Library Mapping for Embedded Software Using Symbolic Algebra

    Get PDF
    Embedded software designers often use libraries that have been pre-optimized for a given processor to achieve higher code quality. However, using such libraries in legacy code optimization is nontrivial and typically requires manual intervention. This paper presents a methodology that maps algorithmic constructs of the software specification to a library of complex software elements. This library-mapping step is automated by using symbolic algebra techniques. We illustrate the advantages of our methodology by optimizing an algorithmic level description of MPEG Layer III (MP3) audio decoder for the Badge4 [2] portable embedded system. During the optimization process we use commercially available libraries with complex elements ranging from simple mathematical functions such as exp to the IDCT routine. We implemented and measured the performance and energy consumption of the MP3 decoder software on Badge4 running embedded Linux operating system. The optimized MP3 audio decoder runs 300 times faster than the original code obtained from the standards body while consuming 400 times less energy. Since our optimized MP3 decoder runs 3.5 times faster than real-time, additional energy can be saved by using processor frequency and voltage scaling

    Abstract State Machines 1988-1998: Commented ASM Bibliography

    Get PDF
    An annotated bibliography of papers which deal with or use Abstract State Machines (ASMs), as of January 1998.Comment: Also maintained as a BibTeX file at http://www.eecs.umich.edu/gasm

    A Mathematical Framework for Agent Based Models of Complex Biological Networks

    Full text link
    Agent-based modeling and simulation is a useful method to study biological phenomena in a wide range of fields, from molecular biology to ecology. Since there is currently no agreed-upon standard way to specify such models it is not always easy to use published models. Also, since model descriptions are not usually given in mathematical terms, it is difficult to bring mathematical analysis tools to bear, so that models are typically studied through simulation. In order to address this issue, Grimm et al. proposed a protocol for model specification, the so-called ODD protocol, which provides a standard way to describe models. This paper proposes an addition to the ODD protocol which allows the description of an agent-based model as a dynamical system, which provides access to computational and theoretical tools for its analysis. The mathematical framework is that of algebraic models, that is, time-discrete dynamical systems with algebraic structure. It is shown by way of several examples how this mathematical specification can help with model analysis.Comment: To appear in Bulletin of Mathematical Biolog

    Determining the quality of mathematical software using reference data sets

    Get PDF
    This paper describes a methodology for evaluating the numerical accuracy of software that performs mathematical calculations. The authors explain how this methodology extends the concept of metrological traceability, which is fundamental to measurement, to include software quality. Overviews of two European Union-funded projects are also presented. The first project developed an infrastructure to allow software to be verified by testing, via the internet, using reference data sets. The primary focus of the project was software used within systems that make physical measurements. The second project, currently underway, explores using this infrastructure to verify mathematical software used within general scientific and engineering disciplines. Publications on using reference data sets for the verification of mathematical software are usually intended for a readership specialising in measurement science or mathematics. This paper is aimed at a more general readership, in particular software quality specialists and computer scientists. Further engagement with experts in these disciplines will be helpful to the continued development of this application of software quality
    • …
    corecore