155 research outputs found

    Extracting fetal heart beats from maternal abdominal recordings: Selection of the optimal principal components

    Get PDF
    This study presents a systematic comparison of different approaches to the automated selection of the principal components (PC) which optimise the detection of maternal and fetal heart beats from non-invasive maternal abdominal recordings. A public database of 75 4-channel non-invasive maternal abdominal recordings was used for training the algorithm. Four methods were developed and assessed to determine the optimal PC: (1) power spectral distribution, (2) root mean square, (3) sample entropy, and (4) QRS template. The sensitivity of the performance of the algorithm to large-amplitude noise removal (by wavelet de-noising) and maternal beat cancellation methods were also assessed. The accuracy of maternal and fetal beat detection was assessed against reference annotations and quantified using the detection accuracy score F1 [2*PPV*Se / (PPV + Se)], sensitivity (Se), and positive predictive value (PPV). The best performing implementation was assessed on a test dataset of 100 recordings and the agreement between the computed and the reference fetal heart rate (fHR) and fetal RR (fRR) time series quantified. The best performance for detecting maternal beats (F1 99.3%, Se 99.0%, PPV 99.7%) was obtained when using the QRS template method to select the optimal maternal PC and applying wavelet de-noising. The best performance for detecting fetal beats (F1 89.8%, Se 89.3%, PPV 90.5%) was obtained when the optimal fetal PC was selected using the sample entropy method and utilising a fixed-length time window for the cancellation of the maternal beats. The performance on the test dataset was 142.7 beats2/min2 for fHR and 19.9 ms for fRR, ranking respectively 14 and 17 (out of 29) when compared to the other algorithms presented at the Physionet Challenge 2013

    Extraction and Detection of Fetal Electrocardiograms from Abdominal Recordings

    Get PDF
    The non-invasive fetal ECG (NIFECG), derived from abdominal surface electrodes, offers novel diagnostic possibilities for prenatal medicine. Despite its straightforward applicability, NIFECG signals are usually corrupted by many interfering sources. Most significantly, by the maternal ECG (MECG), whose amplitude usually exceeds that of the fetal ECG (FECG) by multiple times. The presence of additional noise sources (e.g. muscular/uterine noise, electrode motion, etc.) further affects the signal-to-noise ratio (SNR) of the FECG. These interfering sources, which typically show a strong non-stationary behavior, render the FECG extraction and fetal QRS (FQRS) detection demanding signal processing tasks. In this thesis, several of the challenges regarding NIFECG signal analysis were addressed. In order to improve NIFECG extraction, the dynamic model of a Kalman filter approach was extended, thus, providing a more adequate representation of the mixture of FECG, MECG, and noise. In addition, aiming at the FECG signal quality assessment, novel metrics were proposed and evaluated. Further, these quality metrics were applied in improving FQRS detection and fetal heart rate estimation based on an innovative evolutionary algorithm and Kalman filtering signal fusion, respectively. The elaborated methods were characterized in depth using both simulated and clinical data, produced throughout this thesis. To stress-test extraction algorithms under ideal circumstances, a comprehensive benchmark protocol was created and contributed to an extensively improved NIFECG simulation toolbox. The developed toolbox and a large simulated dataset were released under an open-source license, allowing researchers to compare results in a reproducible manner. Furthermore, to validate the developed approaches under more realistic and challenging situations, a clinical trial was performed in collaboration with the University Hospital of Leipzig. Aside from serving as a test set for the developed algorithms, the clinical trial enabled an exploratory research. This enables a better understanding about the pathophysiological variables and measurement setup configurations that lead to changes in the abdominal signal's SNR. With such broad scope, this dissertation addresses many of the current aspects of NIFECG analysis and provides future suggestions to establish NIFECG in clinical settings.:Abstract Acknowledgment Contents List of Figures List of Tables List of Abbreviations List of Symbols (1)Introduction 1.1)Background and Motivation 1.2)Aim of this Work 1.3)Dissertation Outline 1.4)Collaborators and Conflicts of Interest (2)Clinical Background 2.1)Physiology 2.1.1)Changes in the maternal circulatory system 2.1.2)Intrauterine structures and feto-maternal connection 2.1.3)Fetal growth and presentation 2.1.4)Fetal circulatory system 2.1.5)Fetal autonomic nervous system 2.1.6)Fetal heart activity and underlying factors 2.2)Pathology 2.2.1)Premature rupture of membrane 2.2.2)Intrauterine growth restriction 2.2.3)Fetal anemia 2.3)Interpretation of Fetal Heart Activity 2.3.1)Summary of clinical studies on FHR/FHRV 2.3.2)Summary of studies on heart conduction 2.4)Chapter Summary (3)Technical State of the Art 3.1)Prenatal Diagnostic and Measuring Technique 3.1.1)Fetal heart monitoring 3.1.2)Related metrics 3.2)Non-Invasive Fetal ECG Acquisition 3.2.1)Overview 3.2.2)Commercial equipment 3.2.3)Electrode configurations 3.2.4)Available NIFECG databases 3.2.5)Validity and usability of the non-invasive fetal ECG 3.3)Non-Invasive Fetal ECG Extraction Methods 3.3.1)Overview on the non-invasive fetal ECG extraction methods 3.3.2)Kalman filtering basics 3.3.3)Nonlinear Kalman filtering 3.3.4)Extended Kalman filter for FECG estimation 3.4)Fetal QRS Detection 3.4.1)Merging multichannel fetal QRS detections 3.4.2)Detection performance 3.5)Fetal Heart Rate Estimation 3.5.1)Preprocessing the fetal heart rate 3.5.2)Fetal heart rate statistics 3.6)Fetal ECG Morphological Analysis 3.7)Problem Description 3.8)Chapter Summary (4)Novel Approaches for Fetal ECG Analysis 4.1)Preliminary Considerations 4.2)Fetal ECG Extraction by means of Kalman Filtering 4.2.1)Optimized Gaussian approximation 4.2.2)Time-varying covariance matrices 4.2.3)Extended Kalman filter with unknown inputs 4.2.4)Filter calibration 4.3)Accurate Fetal QRS and Heart Rate Detection 4.3.1)Multichannel evolutionary QRS correction 4.3.2)Multichannel fetal heart rate estimation using Kalman filters 4.4)Chapter Summary (5)Data Material 5.1)Simulated Data 5.1.1)The FECG Synthetic Generator (FECGSYN) 5.1.2)The FECG Synthetic Database (FECGSYNDB) 5.2)Clinical Data 5.2.1)Clinical NIFECG recording 5.2.2)Scope and limitations of this study 5.2.3)Data annotation: signal quality and fetal amplitude 5.2.4)Data annotation: fetal QRS annotation 5.3)Chapter Summary (6)Results for Data Analysis 6.1)Simulated Data 6.1.1)Fetal QRS detection 6.1.2)Morphological analysis 6.2)Own Clinical Data 6.2.1)FQRS correction using the evolutionary algorithm 6.2.2)FHR correction by means of Kalman filtering (7)Discussion and Prospective 7.1)Data Availability 7.1.1)New measurement protocol 7.2)Signal Quality 7.3)Extraction Methods 7.4)FQRS and FHR Correction Algorithms (8)Conclusion References (A)Appendix A - Signal Quality Annotation (B)Appendix B - Fetal QRS Annotation (C)Appendix C - Data Recording GU

    Estrazione non invasiva del segnale elettrocardiografico fetale da registrazioni con elettrodi posti sull’addome della gestante (Non-invasive extraction of the fetal electrocardiogram from abdominal recordings by positioning electrodes on the pregnant woman’s abdomen)

    Get PDF
    openIl cuore è il primo organo che si sviluppa nel feto, particolarmente nelle primissime settimane di gestazione. Rispetto al cuore adulto, quello fetale ha una fisiologia ed un’anatomia significativamente differenti, a causa della differente circolazione cardiovascolare. Il benessere fetale si valuta monitorando l’attività cardiaca mediante elettrocardiografia fetale (ECGf). L’ECGf invasivo (acquisito posizionando elettrodi allo scalpo fetale) è considerato il gold standard, ma l’invasività che lo caratterizza ne limita la sua applicabilità. Al contrario, l’uso clinico dell’ECGf non invasivo (acquisito posizionando elettrodi sull’addome della gestante) è limitato dalla scarsa qualità del segnale risultante. L’ECGf non invasivo si estrae da registrazioni addominali, che sono corrotte da differenti tipi di rumore, fra i quali l’interferenza primaria è rappresentata dall’ECG materno. Il Segmented-Beat Modulation Method (SBMM) è stato da me recentemente proposto come una nuova procedura di filtraggio basata sul calcolo del template del battito cardiaco. SBMM fornisce una stima ripulita dell’ECG estratto da registrazioni rumorose, preservando la fisiologica variabilità ECG del segnale originale. Questa caratteristica è ottenuta grazie alla segmentazione di ogni battito cardiaco per indentificare i segmenti QRS e TUP, seguito dal processo di modulazione/demodulazione (che include strecciamento e compressione) del segmento TUP, per aggiustarlo in modo adattativo alla morfologia e alla durata di ogni battito originario. Dapprima applicato all’ECG adulto al fine di dimostrare la sua robustezza al rumore, l’SBMM è stato poi applicato al caso fetale. Particolarmente significativi sono i risultati relativi alle applicazioni su ECGf non invasivo, dove l’SBMM fornisce segnali caratterizzati da un rapporto segnale-rumore comparabile a quello caratterizzante l’ECGf invasivo. Tuttavia, l’SBMM può contribuire alla diffusione dell’ECGf non invasiva nella pratica clinica.The heart is the first organ that develops in the fetus, particularly in the very early stages of pregnancy. Compared to the adult heart, the physiology and anatomy of the fetal heart exhibit some significant differences. These differences originate from the fact that the fetal cardiovascular circulation is different from the adult circulation. Fetal well-being evaluation may be accomplished by monitoring cardiac activity through fetal electrocardiography (fECG). Invasive fECG (acquired through scalp electrodes) is the gold standard but its invasiveness limits its clinical applicability. Instead, clinical use of non-invasive fECG (acquired through abdominal electrodes) has so far been limited by its poor signal quality. Non-invasive fECG is extracted from the abdominal recording and is corrupted by different kind of noise, among which maternal ECG is the main interference. The Segmented-Beat Modulation Method (SBMM) was recently proposed by myself as a new template-based filtering procedure able to provide a clean ECG estimation from a noisy recording by preserving physiological ECG variability of the original signal. The former feature is achieved thanks to a segmentation procedure applied to each cardiac beat in order to identify the QRS and TUP segments, followed by a modulation/demodulation process (involving stretching and compression) of the TUP segments to adaptively adjust each estimated cardiac beat to the original beat morphology and duration. SBMM was first applied to adult ECG applications, in order to demonstrate its robustness to noise, and then to fECG applications. Particularly significant are the results relative to the non-invasive applications, where SBMM provided fECG signals characterized by a signal-to-noise ratio comparable to that characterizing invasive fECG. Thus, SBMM may contribute to the spread of this noninvasive fECG technique in the clinical practice.INGEGNERIA DELL'INFORMAZIONEAgostinelli, AngelaAgostinelli, Angel

    Efficient fetal-maternal ECG signal separation from two channel maternal abdominal ECG via diffusion-based channel selection

    Full text link
    There is a need for affordable, widely deployable maternal-fetal ECG monitors to improve maternal and fetal health during pregnancy and delivery. Based on the diffusion-based channel selection, here we present the mathematical formalism and clinical validation of an algorithm capable of accurate separation of maternal and fetal ECG from a two channel signal acquired over maternal abdomen

    Non-invasive fetal electrocardiogram : analysis and interpretation

    Get PDF
    High-risk pregnancies are becoming more and more prevalent because of the progressively higher age at which women get pregnant. Nowadays about twenty percent of all pregnancies are complicated to some degree, for instance because of preterm delivery, fetal oxygen deficiency, fetal growth restriction, or hypertension. Early detection of these complications is critical to permit timely medical intervention, but is hampered by strong limitations of existing monitoring technology. This technology is either only applicable in hospital settings, is obtrusive, or is incapable of providing, in a robust way, reliable information for diagnosis of the well-being of the fetus. The most prominent method for monitoring of the fetal health condition is monitoring of heart rate variability in response to activity of the uterus (cardiotocography; CTG). Generally, in obstetrical practice, the heart rate is determined in either of two ways: unobtrusively with a (Doppler) ultrasound probe on the maternal abdomen, or obtrusively with an invasive electrode fixed onto the fetal scalp. The first method is relatively inaccurate but is non-invasive and applicable in all stages of pregnancy. The latter method is far more accurate but can only be applied following rupture of the membranes and sufficient dilatation, restricting its applicability to only the very last phase of pregnancy. Besides these accuracy and applicability issues, the use of CTG in obstetrical practice also has another limitation: despite its high sensitivity, the specificity of CTG is relatively low. This means that in most cases of fetal distress the CTG reveals specific patterns of heart rate variability, but that these specific patterns can also be encountered for healthy fetuses, complicating accurate diagnosis of the fetal condition. Hence, a prerequisite for preventing unnecessary interventions that are based on CTG alone, is the inclusion of additional information in diagnostics. Monitoring of the fetal electrocardiogram (ECG), as a supplement of CTG, has been demonstrated to have added value for monitoring of the fetal health condition. Unfortunately the application of the fetal ECG in obstetrical diagnostics is limited because at present the fetal ECG can only be measured reliably by means of an invasive scalp electrode. To overcome this limited applicability, many attempts have been made to record the fetal ECG non-invasively from the maternal abdomen, but these attempts have not yet led to approaches that permit widespread clinical application. One key difficulty is that the signal to noise ratio (SNR) of the transabdominal ECG recordings is relatively low. Perhaps even more importantly, the abdominal ECG recordings yield ECG signals for which the morphology depends strongly on the orientation of the fetus within the maternal uterus. Accordingly, for any fetal orientation, the ECG morphology is different. This renders correct clinical interpretation of the recorded ECG signals complicated, if not impossible. This thesis aims to address these difficulties and to provide new contributions on the clinical interpretation of the fetal ECG. At first the SNR of the recorded signals is enhanced through a series of signal processing steps that exploit specific and a priori known properties of the fetal ECG. More particularly, the dominant interference (i.e. the maternal ECG) is suppressed by exploiting the absence of temporal correlation between the maternal and fetal ECG. In this suppression, the maternal ECG complex is dynamically segmented into individual ECG waves and each of these waves is estimated through averaging corresponding waves from preceding ECG complexes. The maternal ECG template generated by combining the estimated waves is subsequently subtracted from the original signal to yield a non-invasive recording in which the maternal ECG has been suppressed. This suppression method is demonstrated to be more accurate than existing methods. Other interferences and noise are (partly) suppressed by exploiting the quasiperiodicity of the fetal ECG through averaging consecutive ECG complexes or by exploiting the spatial correlation of the ECG. The averaging of several consecutive ECG complexes, synchronized on their QRS complex, enhances the SNR of the ECG but also can suppress morphological variations in the ECG that are clinically relevant. The number of ECG complexes included in the average hence constitutes a trade-off between SNR enhancement on the one hand and loss of morphological variability on the other hand. To relax this trade-off, in this thesis a method is presented that can adaptively estimate the number of ECG complexes included in the average. In cases of morphological variations, this number is decreased ensuring that the variations are not suppressed. In cases of no morphological variability, this number is increased to ensure adequate SNR enhancement. The further suppression of noise by exploiting the spatial correlation of the ECG is based on the fact that all ECG signals recorded at several locations on the maternal abdomen originate from the same electrical source, namely the fetal heart. The electrical activity of the fetal heart at any point in time can be modeled as a single electrical field vector with stationary origin. This vector varies in both amplitude and orientation in three-dimensional space during the cardiac cycle and the time-path described by this vector is referred to as the fetal vectorcardiogram (VCG). In this model, the abdominal ECG constitutes the projection of the VCG onto the vector that describes the position of the abdominal electrode with respect to a reference electrode. This means that when the VCG is known, any desired ECG signal can be calculated. Equivalently, this also means that when enough ECG signals (i.e. at least three independent signals) are known, the VCG can be calculated. By using more than three ECG signals for the calculation of the VCG, redundancy in the ECG signals can be exploited for added noise suppression. Unfortunately, when calculating the fetal VCG from the ECG signals recorded from the maternal abdomen, the distance between the fetal heart and the electrodes is not the same for each electrode. Because the amplitude of the ECG signals decreases with propagation to the abdominal surface, these different distances yield a specific, unknown attenuation for each ECG signal. Existing methods for estimating the VCG operate with a fixed linear combination of the ECG signals and, hence, cannot account for variations in signal attenuation. To overcome this problem and be able to account for fetal movement, in this thesis a method is presented that estimates both the VCG and, to some extent, also the signal attenuation. This is done by determining for which VCG and signal attenuation the joint probability over both these variables is maximal given the observed ECG signals. The underlying joint probability distribution is determined by assuming the ECG signals to originate from scaled VCG projections and additive noise. With this method, a VCG, tailored to each specific patient, is determined. With respect to the fixed linear combinations, the presented method performs significantly better in the accurate estimation of the VCG. Besides describing the electrical activity of the fetal heart in three dimensions, the fetal VCG also provides a framework to account for the fetal orientation in the uterus. This framework enables the detection of the fetal orientation over time and allows for rotating the fetal VCG towards a prescribed orientation. From the normalized fetal VCG obtained in this manner, standardized ECG signals can be calculated, facilitating correct clinical interpretation of the non-invasive fetal ECG signals. The potential of the presented approach (i.e. the combination of all methods described above) is illustrated for three different clinical cases. In the first case, the fetal ECG is analyzed to demonstrate that the electrical behavior of the fetal heart differs significantly from the adult heart. In fact, this difference is so substantial that diagnostics based on the fetal ECG should be based on different guidelines than those for adult ECG diagnostics. In the second case, the fetal ECG is used to visualize the origin of fetal supraventricular extrasystoles and the results suggest that the fetal ECG might in future serve as diagnostic tool for relating fetal arrhythmia to congenital heart diseases. In the last case, the non-invasive fetal ECG is compared to the invasively recorded fetal ECG to gauge the SNR of the transabdominal recordings and to demonstrate the suitability of the non-invasive fetal ECG in clinical applications that, as yet, are only possible for the invasive fetal ECG

    Non-invasive Detection and Compression of Fetal Electrocardiogram

    Get PDF
    Noninvasive detection of fetal electrocardiogram (FECG) from abdominal ECG recordings is highly dependent on typical statistical signal processing techniques such as independent component analysis (ICA), adaptive noise filtering, and multichannel blind deconvolution. In contrast to the previous multichannel FECG extraction methods, several recent schemes for single‐channel FECG extraction such as the extended Kalman filter (EKF), extended Kalman smoother (EKS), template subtraction (TS), and support vector regression (SVR) for detecting R waves on ECG, are evaluated via the quantitative metrics such as sensitivity (SE), positive predictive value (PPV), F‐score, detection error rate (DER), and range of accuracy. A correlation predictor that combines with multivariable gray model (GM) is also proposed for sequential ECG data compression, which displays better percent root mean-square difference (PRD) than those of Sabah’s scheme for fixed and predicted compression ratio (CR). Automatic calculation on fetal heart rate (FHR) on the reconstructed FECG from mixed signals of abdominal ECG recordings is also experimented with sample synthetic ECG data. Sample data on FHR and T/QRS for both physiological case and pathological case are simulated in a 10-min time sequence

    Artificial Intelligence for Noninvasive Fetal Electrocardiogram Analysis

    Get PDF

    Development of a Novel Dataset and Tools for Non-Invasive Fetal Electrocardiography Research

    Get PDF
    This PhD thesis presents the development of a novel open multi-modal dataset for advanced studies on fetal cardiological assessment, along with a set of signal processing tools for its exploitation. The Non-Invasive Fetal Electrocardiography (ECG) Analysis (NInFEA) dataset features multi-channel electrophysiological recordings characterized by high sampling frequency and digital resolution, maternal respiration signal, synchronized fetal trans-abdominal pulsed-wave Doppler (PWD) recordings and clinical annotations provided by expert clinicians at the time of the signal collection. To the best of our knowledge, there are no similar dataset available. The signal processing tools targeted both the PWD and the non-invasive fetal ECG, exploiting the recorded dataset. About the former, the study focuses on the processing aimed at the preparation of the signal for the automatic measurement of relevant morphological features, already adopted in the clinical practice for cardiac assessment. To this aim, a relevant step is the automatic identification of the complete and measurable cardiac cycles in the PWD videos: a rigorous methodology was deployed for the analysis of the different processing steps involved in the automatic delineation of the PWD envelope, then implementing different approaches for the supervised classification of the cardiac cycles, discriminating between complete and measurable vs. malformed or incomplete ones. Finally, preliminary measurement algorithms were also developed in order to extract clinically relevant parameters from the PWD. About the fetal ECG, this thesis concentrated on the systematic analysis of the adaptive filters performance for non-invasive fetal ECG extraction processing, identified as the reference tool throughout the thesis. Then, two studies are reported: one on the wavelet-based denoising of the extracted fetal ECG and another one on the fetal ECG quality assessment from the analysis of the raw abdominal recordings. Overall, the thesis represents an important milestone in the field, by promoting the open-data approach and introducing automated analysis tools that could be easily integrated in future medical devices

    Use of Multiscale Entropy to Characterize Fetal Autonomic Development

    Get PDF
    The idea that uterine environment and adverse events during fetal development could increase the chances of the diseases in adulthood was first published by David Barker in 1998. Since then, investigators have been employing several methods and methodologies for studying and characterizing the ontological development of the fetus, e.g., fetal movement, growth and cardiac metrics. Even with most recent and developed methods such as fetal magnetocardiography (fMCG), investigators are continuously challenged to study fetal development; the fetus is inaccessible. Finding metrics that realize the full capacity of characterizing fetal ontological development remains a technological challenge. In this thesis, the use and value of multiscale entropy to characterize fetal maturation across third trimester of gestation is studied. Using multiscale entropy obtained from participants of a clinical trial, we show that MSE can characterize increasing complexity due to maturation in the fetus, and can distinguish a growing and developing fetal system from a mature system where loss of irregularity is due to compromised complexity from increasing physiologic load. MSE scales add a nonlinear metric that seems to accurately reflect the ontological development of the fetus and hold promise for future use to investigate the effects of maternal stress, intrauterine growth restriction, or predict risk for sudden infant death syndrome
    • …
    corecore