1,582 research outputs found

    Modeling friction: From nanoscale to mesoscale

    Get PDF
    The physics of sliding friction is gaining impulse from nanoscale and mesoscale experiments, simulations, and theoretical modeling. This Colloquium reviews some recent developments in modeling and in atomistic simulation of friction, covering open-ended directions, unconventional nanofrictional systems, and unsolved problems.Comment: 26 pages, 14 figures, Rev. Mod. Phys. Colloquiu

    Dimensional crossover and incipient quantum size effects in superconducting niobium nanofilms

    Full text link
    Superconducting and normal state properties of sputtered Niobium nanofilms have been systematically investigated, as a function of film thickness in a d=9-90 nm range, on different substrates. The width of the superconducting-to-normal transition for all films remained in few tens of mK, thus remarkably narrow, confirming their high quality. We found that the superconducting critical current density exhibits a pronounced maximum, three times larger than its bulk value, for film thickness around 25 nm, marking the 3D-to-2D crossover. The extracted magnetic penetration depth shows a sizeable enhancement for the thinnest films, aside the usual demagnetization effects. Additional amplification effects of the superconducting properties have been obtained in the case of sapphire substrates or squeezing the lateral size of the nanofilms. For thickness close to 20 nm we also measured a doubled perpendicular critical magnetic field compared to its saturation value for d>33 nm, indicating shortening of the correlation length and the formation of small Cooper pairs in the condensate. Our data analysis evidences an exciting interplay between quantum-size and proximity effects together with strong-coupling effects and importance of disorder in the thinnest films, locating the ones with optimally enhanced critical properties close to the BCS-BEC crossover regime

    Recent progress in the JARVIS infrastructure for next-generation data-driven materials design

    Full text link
    The Joint Automated Repository for Various Integrated Simulations (JARVIS) infrastructure at the National Institute of Standards and Technology (NIST) is a large-scale collection of curated datasets and tools with more than 80000 materials and millions of properties. JARVIS uses a combination of electronic structure, artificial intelligence (AI), advanced computation and experimental methods to accelerate materials design. Here we report some of the new features that were recently included in the infrastructure such as: 1) doubling the number of materials in the database since its first release, 2) including more accurate electronic structure methods such as Quantum Monte Carlo, 3) including graph neural network-based materials design, 4) development of unified force-field, 5) development of a universal tight-binding model, 6) addition of computer-vision tools for advanced microscopy applications, 7) development of a natural language processing tool for text-generation and analysis, 8) debuting a large-scale benchmarking endeavor, 9) including quantum computing algorithms for solids, 10) integrating several experimental datasets and 11) staging several community engagement and outreach events. New classes of materials, properties, and workflows added to the database include superconductors, two-dimensional (2D) magnets, magnetic topological materials, metal-organic frameworks, defects, and interface systems. The rich and reliable datasets, tools, documentation, and tutorials make JARVIS a unique platform for modern materials design. JARVIS ensures openness of data and tools to enhance reproducibility and transparency and to promote a healthy and collaborative scientific environment
    • …
    corecore