3,915 research outputs found

    Electro-Discharge Machining of Ceramics: A Review

    Get PDF
    Conventional machining techniques of ceramics such as milling, drilling, and turning experience high cutting forces as well as extensive tool wear. Nevertheless, non-contact processes such as laser machining and electro-discharge machining (EDM) remain suitable options for machining ceramics materials, which are considered as extremely brittle and hard-to-machine. Considering the importance of ceramic machining, this paper attempts to provide an insight into the state of the art of the EDM process, types of ceramics materials and their applications, as well as the machining techniques involved. This study also presents a concise literature review of experimental and theoretical research studies conducted on the EDM of ceramics. Finally, a section summarizing the major challenges, proposed solutions, and suggestions for future research directions has been included at the end of the paper

    Effect of surface finishing on tribological properties of ZrO2-based composites

    Get PDF
    Laboratory-made ZrO2-based composites with 40 vol. % WC, TiCN or TiN were tested in dry sliding contact with WC-6wt%Co cemented carbide using an ASTM G133 pin-on-flat configuration. Surface characterization included profilometric measurement, scanning electron microscopy, energy disperse X-ray analysis and X-ray diffraction. ZrO2-based composites with wire-EDM surface finish displayed higher friction coefficient and wear level compared to their ground equivalents. This finding was correlated to flexural strength measurements, revealing strong discrepancy between both surface finishes. ZrO2-WC composites exhibited superior tribological characteristics compared to the ZrO2-TiCN and ZrO2-TiN grades

    Wear characteristics of ultra-hard cutting tools when machining austempered ductile iron

    Full text link
    Nodularised Ductile Cast Iron, when subjected to heat treatment processes - austenitising and austempering produces Austempered Ductile Iron (ADI). The microstructure of ADI also known as &quot;ausferrite&quot; consists of ferrite, austenite and graphite nodules. Machining ADI using conventional techniques is often a problematic issue due to the microstructural phase transformation from austenite to martensite during machining. This paper evaluates the wear characteristics of ultra hard cutting tools when machining ADI and its effect on machinability. Machining trials consist of turning ADI (ASTMGrade3) using two sets of PCBN tools with 90% and 50% CBN content and two sets of ceramics tools; Aluminium Oxide Titanium Carbide and Silicon Carbide - whisker reinforced Ceramic. The cutting parameters chosen are categorized as roughing and finishing conditions; the roughing condition comprises of constant cutting speed (425 m/min) and depth of cut (2mm) combined with variable feed rates of 0.1, 0.2, 0.3 and 0.4mm/rev. The finishing condition comprises of constant cutting speed (700 m/min) and depth of cut (0.5mm) combined with variable feed rates of 0.1, 0.2, 0.3 and 0.4mm/rev. The benchmark condition to evaluate the performance of the cutting tools was tool wear evaluation, surface texture analysis and cutting force analysis. The paper analyses thermal softening of the workpiece by the tool and its effect on the shearing mechanism under rough and finish machining conditions in term of lower cutting forces and enhanced surface texture of the machined part.<br /

    Advanced Microstructural Characterization of Functionally Graded Dental Ceramic Material for Materials-Informed Finishing

    Get PDF
    Yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) has gained popularity as the choice of material for dental prosthetics. Ivoclar Vivadent’s IPS e.max ZirCAD Prime dental ceramic incorporates a unique gradient technology that varies the yttria content over the thickness of the material. The top layer is composed of 5Y-TZP which is desired for its optical properties while the bottom layer is composed of a much stronger 3Y-TZP. In between the two layers, 5Y-TZP and 3Y-TZP are mixed to form a transition layer. Varying the amount of yttria allows for more esthetically pleasing translucency in the visible areas of the restoration without compromising mechanical strength in the body. This study aims to address the gap between microstructural characterization of this dental ceramic and machining parameters that are relevant to the dental professionals performing surface finishing. The material was examined, before and after sintering, via scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), and energy-dispersive X-ray spectroscopy (EDS), from which average grain size, crystallographic orientation, and elemental composition were analyzed. Critical linear feed rates were derived from these measured parameters. The recommendation of using high cutting speeds addresses the variability in linear feed rate of handheld finishing tools as well as the ductile-to-brittle transition of IPS e.max ZirCAD Prime

    The new challenges of machining Ceramic Matrix Composites (CMCs): review of surface integrity

    Get PDF
    Ceramic Matrix Composites (CMCs) are currently an increasing material choice for several high value and safety-critical components, fact that has recently originated the need of understanding the effect of several machining processes. Due to the complex nature of CMCs - i.e. heterogeneous structure, anisotropic thermal and mechanical behaviour and generally the hard nature of at least one of the constituents (e.g. fibre or matrix) - machining become extremely challenging as the process can yield high mechanical and thermal loads. Furthermore, the orthotropic, brittle and heterogeneous nature of CMCs result in different material removal mechanisms which lead to unique surface defects. Hence, this review paper attempts to provide an informative literature survey of the research done in the field of conventional and non-conventional machining of CMCs with a main focus on critically evaluate how different machining techniques affect the machined surfaces. This is achieved by exploring and recollecting the different material characterisation techniques currently used to observe and quantify the mechanical and thermal surface and subsurface damages and highlight their governing removal mechanisms

    Octree-based production of near net shape components

    Get PDF
    Near net shape (NNS) manufacturing refers to the production of products that require a finishing operation of some kind. NNS manufacturing is important because it enables a significant reduction in: machining work, raw material usage, production time, and energy consumption. This paper presents an integrated system for the production of near net shape components based on the Octree decomposition of 3-D models. The Octree representation is used to automatically decompose and approximate the 3-D models, and to generate the robot instructions required to create assemblies of blocks secured by adhesive. Not only is the system capable of producing shapes of variable precision and complexity (including overhanging or reentrant shapes) from a variety of materials, but it also requires no production tooling (e.g., molds, dies, jigs, or fixtures). This paper details how a number of well-known Octree algorithms for subdivision, neighbor findings, and tree traversal have been modified to support this novel application. This paper ends by reporting the construction of two mechanical components in the prototype cell, and discussing the overall feasibility of the system

    Hard turning of martensitic AISI 440B stainless steel

    Get PDF
    Hard turning has been in use for some time to achieve close dimensional tolerances to eliminate time consuming and costly grinding operations. The most widely used cutting tools for finish machining of hardened steels under dry cutting conditions are the ceramics and PcBN cutting tools. The purpose of this study was to investigate the machinability of hardened martensitic AISI 440 B stainless steel (HRC 42-44) using commercially available cutting tools: alumina based ceramic and PcBN, by hard turning under different machining conditions, by providing an in-depth understanding of wear mechanisms of these cutting tools. The study also developed a serrated chip formation mechanism of the workpiece and provided a deep understanding of the chemical interaction between workpiece and cBN cutting tools, through microstructural analysis of the adhered layer on the worn cutting tool. Experimental studies on the effects of cutting parameters on the tool wear mechanism, cutting forces; surface roughness, dimensional accuracy, and chip formation mechanism were investigated. The characterization of the workpiece, cutting tools, chips and wear scars on the cutting tools was performed using an X-ray diffractometer, and optical, scanning and transmission electron microscopes, as well as an energy dispersive spectroscope (EDS). The cutting speeds selected for testing the cutting tools were in the range of 100 m/min and 600 m/min, depending on the type of parameter investigated. Two depths of cut, 0.1and 0.2 mm, and three feed rates, 0.05, 0.1 and 0.15 rev/min, were selected for the experiments. Experimental results showed that the flank wear in the PcBN cutting tool is lower than that of the mixed alumina, with PcBN showing better wear resistance at all cutting conditions (about five times longer in some instances). Apart from the cutting speed, the feed rate was found as a parameter that directly influences the flank wear rate of the cutting tool. The wear mechanism for the ceramic cutting tool is predominantly abrasive wear, and for PcBN tools it was adhesive wear and abrasive wear. The abrasive wear was caused by hard carbide particles in the workpiece material resulting in grooves formed on the flank face. There was formation of a transferred layer followed by plastic deformation of the workpiece material on the rake face of the PcBN tool when cutting at low cutting speed and feed rate. At much higher cutting speeds, some form of chemical wear preceded by adhesion and abrasion was the main tool wear resulting from the chemical affinity between the PcBN tool and the workpiece. Better surface finish (Ra) was recorded for mixed ceramics but with deteriorating surface topography. The increase in the cutting speed results for improvement in the surface finish produced by both cutting tools was investigated. The final part, using the PcBN cutting tool, produced better dimensional accuracy resulting from its better wear resistance at the flank face. The results also show that good dimensional accuracy can be achieved with cBN tools using a CNC machine with high static and dimensional stiffness coupled with high precision hard turning. The influence of cutting conditions on the chip formation showed production of continuous chip at a cutting speed of 100 m/min and segmented chip at higher cutting speeds above 200 m/min by both cutting tools. The increasing cutting speed affects the formation of shear localised chips with rapid increase in shear strain rate and degree of segmentation at cutting speeds higher than 200 m/min. The microstructure of the chip produced shows the distinct carbide grain in the martensite of the work material with intense shear localisation in the primary deformation zone of the cutting tool and formation of white layer in the secondary deformation zone. The microstructure of the crater of the worn PcBN cutting tool at cutting speeds of 100 m/min and 600 m/min were studied in detail. A situ lift-out technique, in a Focused Ion Beam/SEM instrument, was used to produce thin foil specimens, which were taken out of the crater face of the PcBN tool and observed using SEM and TEM. The SEM and TEM study showed evidence of chemical interaction between the work material and the PcBN tool. Fe from the work material was found in the vicinity of TiC and AlB grains of the PcBN tool, with TiC having greater affinity for Fe. Oxidation of the elements was common in all Fe-rich areas. The microstructure of the worn PcBN cutting tool at the cutting speed of 600 m/min showed deeper penetration of Cr and Fe into the cBN tool, which was not easily detected by SEM at the cutting speed of 100 m/min. The hard turning operations using the PcBN cutting tool for substituting traditional machining operations was successfully performed in the industrial environment. The overall surface finish and dimensional accuracy generated during the application of CBN-100 for machining within the industrial environment on specified mass produced shape showed a component acceptable tolerance range with good surface finish similar to that of the grinding operation
    corecore