9,550 research outputs found

    Experimental observation of superscattering

    Get PDF
    Superscattering, induced by degenerate resonances, breaks the fundamental single-channel limit of scattering cross section of subwavelength structures; in principle, an arbitrarily large total cross section can be achieved via superscattering. It thus provides a unique way to strengthen the light-matter interaction at the subwavelength scale, and has many potential applications in sensing, energy harvesting, bio-imaging (such as magnetic resonance imaging), communication and optoelectronics. However, the experimental demonstration of superscattering remains an open challenge due to its vulnerability to structural imperfections and intrinsic material losses. Here we report the first experimental evidence for superscattering, by demonstrating the superscattering simultaneously in two different frequency regimes through both the far-field and near-field measurements. The underlying mechanism for the observed superscattering is the degenerate resonances of confined surface waves, by utilizing a subwavelength metasurface-based multilayer structure. Our work paves the way towards practical applications based on superscattering

    General Metasurface Synthesis Based on Susceptibility Tensors

    Full text link
    A general method, based on susceptibility tensors, is proposed for the synthesis of metasurfaces transforming arbitrary incident waves into arbitrary reflected and transmitted waves. The proposed method exhibits two advantages: 1)it is inherently vectorial, and therefore better suited for full vectorial (beyond paraxial) electromagnetic problems, 2) it provides closed-form solutions, and is therefore extremely fast. Incidentally, the method reveals that a metasurface is fundamentally capable to transform up to four independent wave triplets (incident, reflected and refracted waves). In addition, the paper provides the closed-form expressions relating the synthesized susceptibilities and the scattering parameters simulated within periodic boundary conditions, which allows one to design the scattering particles realizing the desired susceptibilities. The versatility of the method is illustrated by examples of metasurfaces achieving the following transformations: generalized refraction, reciprocal and non-reciprocal polarization rotation, Bessel vortex beam generation, and orbital angular momentum multiplexing

    Focusing and Compression of Ultrashort Pulses through Scattering Media

    Full text link
    Light scattering in inhomogeneous media induces wavefront distortions which pose an inherent limitation in many optical applications. Examples range from microscopy and nanosurgery to astronomy. In recent years, ongoing efforts have made the correction of spatial distortions possible by wavefront shaping techniques. However, when ultrashort pulses are employed scattering induces temporal distortions which hinder their use in nonlinear processes such as in multiphoton microscopy and quantum control experiments. Here we show that correction of both spatial and temporal distortions can be attained by manipulating only the spatial degrees of freedom of the incident wavefront. Moreover, by optimizing a nonlinear signal the refocused pulse can be shorter than the input pulse. We demonstrate focusing of 100fs pulses through a 1mm thick brain tissue, and 1000-fold enhancement of a localized two-photon fluorescence signal. Our results open up new possibilities for optical manipulation and nonlinear imaging in scattering media
    • …
    corecore