6,749 research outputs found

    Rapid identification of micro and nanoplastics by line scan Raman micro-spectroscopy

    Get PDF
    Microplastic pollution has become an environmental problem that cannot be ignored in our society. Raman spectroscopy technology has been widely used in the field of microplastics detection due to its non-contact, non-destructive chemical specificity. Traditional point confocal Raman micro-spectroscopy technology uses single-point detection, resulting in long measurement times to scan the large areas of interest of typical samples. In this paper, we present a line scan confocal Raman micro-spectroscopy tool for fast detection and identification of microplastic particles. We show size and composition identification of particles and imaging over large areas. Compared with point confocal Raman imaging, the line scan confocal Raman technology increases the imaging speed by 1–2 orders of magnitude

    Quantifying the breeding distribution and habitat use of the snow petrel (Pagodroma nivea), the world’s most southerly breeding vertebrate

    Get PDF
    Seabirds in the Southern Ocean serve as important ecological indicators of ecosystem status, responding to environmental conditions at both local and regional scales. However, knowledge of the spatial distribution of many polar seabird species is incomplete due to logistical difficulties of accessing remote breeding locations. A prime example is the snow petrel Pagodroma nivea, the most southerly breeding vertebrate in the world, whose breeding distribution has not been assessed in almost three decades. This thesis aims to quantify this species’ breeding distribution, characterise breeding habitat, and test whether remote sensing can detect known breeding sites. To do so, records of breeding locations, including population estimates when available, were collected from previously published work. Local scale environmental conditions at breeding sites (lithology, temperature, precipitation and wind speed), distance to the coast and regional sea-ice conditions accessible within defined foraging ranges were characterised. Two large breeding sites were subsequently selected for remote sensing, with image enhancement and unsupervised classification performed. The results provide the first updated version of the circumpolar breeding distribution, in which 456 breeding sites are now known, 158 more than the previous inventory. Most known breeding sites are biased towards the location of research stations, indicating more remote breeding sites remain undiscovered. As a cavity-nesting species, the distribution is partly controlled by cavity availability, and results suggest preferential use of cavities in intrusive igneous and high-grade metamorphic lithologies, with the majority of the known breeding population located on the latter. Breeding snow petrels face a central-place foraging constraint, needing to repeatedly return to their nests, and it has been hypothesised therefore that the breeding distribution is limited by distance to pack-ice, where they forage. Characterising regional sea-ice conditions in areas accessible from breeding sites (foraging habitat) supports this, with a median distance from breeding sites to the November ice edge of 430 km. However, the most remote sites are > 1000 km from this foraging habitat. The lack of accessible foraging habitat, due to the year-round persistence of high concentration sea ice in the Weddell Sea, likely explains the absence of breeding sites on the eastern Antarctic Peninsula. However, other gaps in the breeding distribution remain unexplained. The results of remote sensing indicate that if we are to detect breeding sites remotely, better spectral and spatial resolution imagery will be needed, as well as ground truthing data recorded at breeding sites. As ~70% of known breeding sites were recorded before 2000, more consistent and detailed data on breeding sites and breeding populations are also needed to better understand the distribution. Similarly, more widespread long-term studies of snow petrel populations are needed in order to predict the response of this species to climate change

    Producing context specific land cover and land use maps of human-modified tropical forest landscapes for infectious disease applications

    Get PDF
    Satellite-based land cover mapping plays an important role in understanding changes in ecosystems and biodiversity. There are global land cover products available, however for region specific studies of drivers of infectious disease patterns, these can lack the spatial and thematic detail or accuracy required to capture key ecological processes. To overcome this, we produced our own Landsat derived 30 m maps for three districts in India's Western Ghats (Wayanad, Shivamogga and Sindhudurg). The maps locate natural vegetation types, plantation types, agricultural areas, water bodies and settlements in the landscape, all relevant to functional resource use of species involved in infectious disease dynamics. The maps represent the mode of 50 classification iterations and include a spatial measure of class stability derived from these iterations. Overall accuracies for Wayanad, Shivamogga and Sindhudurg are 94.7 % (SE 1.2 %), 88.9 % (SE 1.2 %) and 88.8 % (SE 2 %) respectively. Class classification stability was high across all three districts and the individual classes that matter for defining key interfaces between human habitation, forests, crop, and plantation cultivation, were generally well separated. A comparison with the 300 m global ESA CCI land cover map highlights lower ESA CCI class accuracies and the importance of increased spatial resolution when dealing with complex landscape mosaics. A comparison with the 30 m Global Forest Change product reveals an accurate mapping of forest loss and different dynamics between districts (i.e., Forests lost to Built-up versus Forests lost to Plantations), demonstrating an interesting complementarity between our maps and the % tree cover Global Forest Change product. When studying infectious disease responses to land use change in tropical forest ecosystems, we recommend using bespoke land cover/use classifications reflecting functional resource use by relevant vectors, reservoirs, and people. Alternatively, global products should be carefully validated with ground reference points representing locally relevant habitats. [Abstract copyright: Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.

    ‘When is a hotspot a good nanospot’:review of analytical and hotspot-dominated surface enhanced Raman spectroscopy nanoplatforms

    Get PDF
    Substrate development in surface-enhanced Raman spectroscopy (SERS) continues to attract research interest. In order to determine performance metrics, researchers in foundational SERS studies use a variety of experimental means to characterize the nature of substrates. However, often this process would appear to be performed indiscriminately without consideration for the physical scale of the enhancement phenomena. Herein, we differentiate between SERS substrates whose primary enhancing structures are on the hundreds of nanometer scale (analytical SERS nanosubstrates) and those whose main mechanism derives from nanometric-sized gaps (hot-spot dominated SERS substrates), assessing the utility of various characterization methods for each substrate class. In this context, characterization approaches in white-light spectroscopy, electron beam methods, and scanning probe spectroscopies are reviewed. Tip-enhanced Raman spectroscopy, wavelength-scanned SERS studies, and the impact of surface hydrophobicity are also discussed. Conclusions are thus drawn on the applicability of each characterization technique regarding amenability for SERS experiments that have features at different length scales. For instance, while white light spectroscopy can provide an indication of the plasmon resonances associated with 10 s–100 s nm-scale structures, it may not reveal information about finer surface texturing on the true nm-scale, critical for SERS’ sensitivity, and in need of investigation via scanning probe techniques

    Proceedings of the 10th International congress on architectural technology (ICAT 2024): architectural technology transformation.

    Get PDF
    The profession of architectural technology is influential in the transformation of the built environment regionally, nationally, and internationally. The congress provides a platform for industry, educators, researchers, and the next generation of built environment students and professionals to showcase where their influence is transforming the built environment through novel ideas, businesses, leadership, innovation, digital transformation, research and development, and sustainable forward-thinking technological and construction assembly design

    Energy assessment of advanced and switchable windows for less energy-hungry buildings in the UK

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this recordData availability: Data will be made available on request.Globally, greenhouse gas emissions from the operational phase of buildings are significantly contributing towards climate change. Global and national efforts, through the Sustainable Development Goals and the UK's 2050 targets, aim to reduce these emissions with net zero energy buildings (NZEBs). A building's glazing plays a significant role in overall building energy consumption due to their traditionally ‘leaky’ nature. This study utilises experimental data from test cells and the International Glazing Database to evaluate the performance of advanced and smart/switchable windows on an existing low energy building (LEB) situated in north Wales, UK, as a step towards making the modelled building a NZEB. A number of glazing constructions were considered in this work; advanced window – vacuum, aerogel, vacuum-aerogel and smart window – PDLC, PDLC-aerogel and PDLC-vacuum, in their fixed and switching states. Results revealed that PDLC-vacuum offered the greatest reduction in building energy, yielding a theoretical U-value of 0.810–0.831 W/m2K and a G-value of 0.257–0.455. Despite its successes, it was notably susceptible to window orientation and window-to-wall ratio. Vacuum and aerogel glazing both offered similar energy savings, with the latter prone to overheating, stressing cooling loads. These advanced windows offered differing daylighting potential with vacuum able to meet 78% of useful daylight illuminance compared to aerogel's 60%. Given the prioritisation trilemma between heating, lighting and cooling needs of a building, PDLC-vacuum presents the best step towards a NZEB. As such, further efforts should concentrate on the development of a PDLC-vacuum window, maintaining smart window functionality and achieving low U-value for cold climates

    The development of liquid crystal lasers for application in fluorescence microscopy

    Get PDF
    Lasers can be found in many areas of optical medical imaging and their properties have enabled the rapid advancement of many imaging techniques and modalities. Their narrow linewidth, relative brightness and coherence are advantageous in obtaining high quality images of biological samples. This is particularly beneficial in fluorescence microscopy. However, commercial imaging systems depend on the combination of multiple independent laser sources or use tuneable sources, both of which are expensive and have large footprints. This thesis demonstrates the use of liquid crystal (LC) laser technology, a compact and portable alternative, as an exciting candidate to provide a tailorable light source for fluorescence microscopy. Firstly, to improve the laser performance parameters such that high power and high specification lasers could be realised; device fabrication improvements were presented. Studies exploring the effect of alignment layer rubbing depth and the device cell gap spacing on laser performance were conducted. The results were the first of their kind and produced advances in fabrication that were critical to repeatedly realising stable, single-mode LC laser outputs with sufficient power to conduct microscopy. These investigations also aided with the realisation of laser diode pumping of LC lasers. Secondly, the identification of optimum dye concentrations for single and multi-dye systems were used to optimise the LC laser mixtures for optimal performance. These investigations resulted in novel results relating to the gain media in LC laser systems. Collectively, these advancements yielded lasers of extremely low threshold, comparable to the lowest reported thresholds in the literature. A portable LC laser system was integrated into a microscope and used to perform fluorescence microscopy. Successful two-colour imaging and multi-wavelength switching ability of LC lasers were exhibited for the first time. The wavelength selectivity of LC lasers was shown to allow lower incident average powers to be used for comparable image quality. Lastly, wavelength selectivity enabled the LC laser fluorescence microscope to achieve high enough sensitivity to conduct quantitative fluorescence measurements. The development of LC lasers and their suitability to fluorescence microscopy demonstrated in this thesis is hoped to push towards the realisation of commercialisation and application for the technology

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches

    Get PDF
    Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly

    Photocatalysis in the Wastewater Treatment

    Get PDF
    The use of photocatalysis for wastewater treatment is an important area of research, which is not yet fully exploited at an industrial level and has significant potential in the disposal of many industrial effluents, particularly the effluents that are difficult to treat by conventional treatment processes. This reprint tries to know the latest advances in the field of wastewater treatment by photocatalysis. In this sense, it is worth mentioning the treatments based on photolysis, TiO2/solar light, oxidants/ultraviolet irradiation, oxidants/catalyst/ultraviolet irradiation, etc. In addition, the reprint describes catalyst manufacturing methods and reaction mechanisms
    • …
    corecore