3,760 research outputs found

    Linear transformation distance for bichromatic matchings

    Full text link
    Let P=B∪RP=B\cup R be a set of 2n2n points in general position, where BB is a set of nn blue points and RR a set of nn red points. A \emph{BRBR-matching} is a plane geometric perfect matching on PP such that each edge has one red endpoint and one blue endpoint. Two BRBR-matchings are compatible if their union is also plane. The \emph{transformation graph of BRBR-matchings} contains one node for each BRBR-matching and an edge joining two such nodes if and only if the corresponding two BRBR-matchings are compatible. In SoCG 2013 it has been shown by Aloupis, Barba, Langerman, and Souvaine that this transformation graph is always connected, but its diameter remained an open question. In this paper we provide an alternative proof for the connectivity of the transformation graph and prove an upper bound of 2n2n for its diameter, which is asymptotically tight

    Proof of the 1-factorization and Hamilton decomposition conjectures III: approximate decompositions

    Full text link
    In a sequence of four papers, we prove the following results (via a unified approach) for all sufficiently large nn: (i) [1-factorization conjecture] Suppose that nn is even and D≥2⌈n/4⌉−1D\geq 2\lceil n/4\rceil -1. Then every DD-regular graph GG on nn vertices has a decomposition into perfect matchings. Equivalently, χ′(G)=D\chi'(G)=D. (ii) [Hamilton decomposition conjecture] Suppose that D≥⌊n/2⌋D \ge \lfloor n/2 \rfloor . Then every DD-regular graph GG on nn vertices has a decomposition into Hamilton cycles and at most one perfect matching. (iii) We prove an optimal result on the number of edge-disjoint Hamilton cycles in a graph of given minimum degree. According to Dirac, (i) was first raised in the 1950s. (ii) and (iii) answer questions of Nash-Williams from 1970. The above bounds are best possible. In the current paper, we show the following: suppose that GG is close to a complete balanced bipartite graph or to the union of two cliques of equal size. If we are given a suitable set of path systems which cover a set of `exceptional' vertices and edges of GG, then we can extend these path systems into an approximate decomposition of GG into Hamilton cycles (or perfect matchings if appropriate).Comment: We originally split the proof into four papers, of which this was the third paper. We have now combined this series into a single publication [arXiv:1401.4159v2], which will appear in the Memoirs of the AMS. 29 pages, 2 figure
    • …
    corecore