1,065 research outputs found

    Matchings and Covers in Hypergraphs

    Get PDF
    In this thesis, we study three variations of matching and covering problems in hypergraphs. The first is motivated by an old conjecture of Ryser which says that if \mcH is an rr-uniform, rr-partite hypergraph which does not have a matching of size at least ν+1\nu +1, then \mcH has a vertex cover of size at most (r−1)ν(r-1)\nu. In particular, we examine the extremal hypergraphs for the r=3r=3 case of Ryser's conjecture. In 2014, Haxell, Narins, and Szab{\'{o}} characterized these 33-uniform, tripartite hypergraphs. Their work relies heavily on topological arguments and seems difficult to generalize. We reprove their characterization and significantly reduce the topological dependencies. Our proof starts by using topology to show that every 33-uniform, tripartite hypergraph has two matchings which interact with each other in a very restricted way. However, the remainder of the proof uses only elementary methods to show how the extremal hypergraphs are built around these two matchings. Our second motivational pillar is Tuza's conjecture from 1984. For graphs GG and HH, let νH(G)\nu_{H}(G) denote the size of a maximum collection of pairwise edge-disjoint copies of HH in GG and let τH(G)\tau_{H}(G) denote the minimum size of a set of edges which meets every copy of HH in GG. The conjecture is relevant to the case where H=K3H=K_{3} and says that τ▽(G)≤2ν▽(G)\tau_{\triangledown}(G) \leq 2\nu_{\triangledown}(G) for every graph GG. In 1998, Haxell and Kohayakawa proved that if GG is a tripartite graph, then τ▽(G)≤1.956ν▽(G)\tau_{\triangledown}(G) \leq 1.956\nu_{\triangledown}(G). We use similar techniques plus a topological result to show that τ▽(G)≤1.87ν▽(G)\tau_{\triangledown}(G) \leq 1.87\nu_{\triangledown}(G) for all tripartite graphs GG. We also examine a special subclass of tripartite graphs and use a simple network flow argument to prove that τ▽(H)=ν▽(H)\tau_{\triangledown}(H) = \nu_{\triangledown}(H) for all such graphs HH. We then look at the problem of packing and covering edge-disjoint K4K_{4}'s. Yuster proved that if a graph GG does not have a fractional packing of K4K_{4}'s of size bigger than ν⊠∗(G)\nu_{\boxtimes}^{*}(G), then τ⊠(G)≤4ν⊠∗(G)\tau_{\boxtimes}(G) \leq 4\nu_{\boxtimes}^{*}(G). We give a complementary result to Yuster's for K4K_{4}'s: We show that every graph GG has a fractional cover of K4K_{4}'s of size at most 92ν⊠(G)\frac{9}{2}\nu_{\boxtimes}(G). We also provide upper bounds on τ⊠\tau_{\boxtimes} for several classes of graphs. Our final topic is a discussion of fractional stable matchings. Tan proved that every graph has a 12\frac{1}{2}-integral stable matching. We consider hypergraphs. There is a natural notion of fractional stable matching for hypergraphs, and we may ask whether an analogous result exists for this setting. We show this is not the case: Using a construction of Chung, F{\"{u}}redi, Garey, and Graham, we prove that, for all n \in \mbN, there is a 33-uniform hypergraph with preferences with a fractional stable matching that is unique and has denominators of size at least nn

    Matchings in 3-uniform hypergraphs

    Full text link
    We determine the minimum vertex degree that ensures a perfect matching in a 3-uniform hypergraph. More precisely, suppose that H is a sufficiently large 3-uniform hypergraph whose order n is divisible by 3. If the minimum vertex degree of H is greater than \binom{n-1}{2}-\binom{2n/3}{2}, then H contains a perfect matching. This bound is tight and answers a question of Han, Person and Schacht. More generally, we show that H contains a matching of size d\le n/3 if its minimum vertex degree is greater than \binom{n-1}{2}-\binom{n-d}{2}, which is also best possible. This extends a result of Bollobas, Daykin and Erdos.Comment: 18 pages, 1 figure. To appear in JCT

    Hamiltonicity and σ\sigma-hypergraphs

    Get PDF
    We define and study a special type of hypergraph. A σ\sigma-hypergraph H=H(n,r,qH= H(n,r,q ∣\mid σ\sigma), where σ\sigma is a partition of rr, is an rr-uniform hypergraph having nqnq vertices partitioned into n n classes of qq vertices each. If the classes are denoted by V1V_1, V2V_2,...,VnV_n, then a subset KK of V(H)V(H) of size rr is an edge if the partition of rr formed by the non-zero cardinalities ∣ \mid KK ∩\cap Vi∣V_i \mid, 1≤i≤n 1 \leq i \leq n, is σ\sigma. The non-empty intersections KK ∩\cap ViV_i are called the parts of KK, and s(σ)s(\sigma) denotes the number of parts. We consider various types of cycles in hypergraphs such as Berge cycles and sharp cycles in which only consecutive edges have a nonempty intersection. We show that most σ\sigma-hypergraphs contain a Hamiltonian Berge cycle and that, for n≥s+1n \geq s+1 and q≥r(r−1)q \geq r(r-1), a σ\sigma-hypergraph HH always contains a sharp Hamiltonian cycle. We also extend this result to kk-intersecting cycles
    • …
    corecore