188 research outputs found

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future

    Matching theory for priority-based cell association in the downlink of wireless small cell networks

    Full text link
    The deployment of small cells, overlaid on existing cellular infrastructure, is seen as a key feature in next-generation cellular systems. In this paper, the problem of user association in the downlink of small cell networks (SCNs) is considered. The problem is formulated as a many-to-one matching game in which the users and SCBSs rank one another based on utility functions that account for both the achievable performance, in terms of rate and fairness to cell edge users, as captured by newly proposed priorities. To solve this game, a novel distributed algorithm that can reach a stable matching is proposed. Simulation results show that the proposed approach yields an average utility gain of up to 65% compared to a common association algorithm that is based on received signal strength. Compared to the classical deferred acceptance algorithm, the results also show a 40% utility gain and a more fair utility distribution among the users.Comment: 5 page

    Interference Aware Cognitive Femtocell Networks

    Get PDF
    Femtocells Access Points (FAP) are low power, plug and play home base stations which are designed to extend the cellular radio range in indoor environments where macrocell coverage is generally poor. They offer significant increases in data rates over a short range, enabling high speed wireless and mobile broadband services, with the femtocell network overlaid onto the macrocell in a dual-tier arrangement. In contrast to conventional cellular systems which are well planned, FAP are arbitrarily installed by the end users and this can create harmful interference to both collocated femtocell and macrocell users. The interference becomes particularly serious in high FAP density scenarios and compromises the ensuing data rate. Consequently, effective management of both cross and co-tier interference is a major design challenge in dual-tier networks. Since traditional radio resource management techniques and architectures for single-tier systems are either not applicable or operate inefficiently, innovative dual-tier approaches to intelligently manage interference are required. This thesis presents a number of original contributions to fulfill this objective including, a new hybrid cross-tier spectrum sharing model which builds upon an existing fractional frequency reuse technique to ensure minimal impact on the macro-tier resource allocation. A new flexible and adaptive virtual clustering framework is then formulated to alleviate co-tier interference in high FAP densities situations and finally, an intelligent coverage extension algorithm is developed to mitigate excessive femto-macrocell handovers, while upholding the required quality of service provision. This thesis contends that to exploit the undoubted potential of dual-tier, macro-femtocell architectures an interference awareness solution is necessary. Rigorous evidence confirms that noteworthy performance improvements can be achieved in the quality of the received signal and throughput by applying cognitive methods to manage interference

    A Survey on Dynamic Spectrum Sharing Using Game Theory in Cognitive Radio Networks

    Get PDF
    Due to the tremendous increase in wireless data traffic, a usable radio spectrum is quickly being depleted. Current Fixed Spectrum Allocation (FSA) strategy give rise to the problem of spectrum scarcity and underutilization. Cognitive Radio (CR) is proposed as a new wireless paradigm to overcome the spectrum underutilization problem. CR is a promising technology which for future wireless communications. CRs can change its operating parameters intelligently in real time to account for dynamic changes in a wireless environment. CR enables a technique called Dynamic Spectrum Allocation (DSA) where the users are able to access unlicensed bands opportunistically. Since idle spectrum from PU is a valuable commodity, many cognitive users will be competing for it simultaneously. Therefore, there arises competition among the users. Users may be only concerned about maximizing their own benefits by behaving rationally and selfishly. Thus spectrum allocation problem falls under NP-hard complex based on its complexity to solve. Out of several solution approaches, Game theory is found to be an efficient mathematical tool since it deals with solving the conflicts among the users. This survey is aimed at providing a comprehensive overview on dynamic spectrum allocation using game theory
    corecore