2,259 research outputs found

    Palmprint Recognition in Uncontrolled and Uncooperative Environment

    Full text link
    Online palmprint recognition and latent palmprint identification are two branches of palmprint studies. The former uses middle-resolution images collected by a digital camera in a well-controlled or contact-based environment with user cooperation for commercial applications and the latter uses high-resolution latent palmprints collected in crime scenes for forensic investigation. However, these two branches do not cover some palmprint images which have the potential for forensic investigation. Due to the prevalence of smartphone and consumer camera, more evidence is in the form of digital images taken in uncontrolled and uncooperative environment, e.g., child pornographic images and terrorist images, where the criminals commonly hide or cover their face. However, their palms can be observable. To study palmprint identification on images collected in uncontrolled and uncooperative environment, a new palmprint database is established and an end-to-end deep learning algorithm is proposed. The new database named NTU Palmprints from the Internet (NTU-PI-v1) contains 7881 images from 2035 palms collected from the Internet. The proposed algorithm consists of an alignment network and a feature extraction network and is end-to-end trainable. The proposed algorithm is compared with the state-of-the-art online palmprint recognition methods and evaluated on three public contactless palmprint databases, IITD, CASIA, and PolyU and two new databases, NTU-PI-v1 and NTU contactless palmprint database. The experimental results showed that the proposed algorithm outperforms the existing palmprint recognition methods.Comment: Accepted in the IEEE Transactions on Information Forensics and Securit

    Biometrics

    Get PDF
    Biometrics uses methods for unique recognition of humans based upon one or more intrinsic physical or behavioral traits. In computer science, particularly, biometrics is used as a form of identity access management and access control. It is also used to identify individuals in groups that are under surveillance. The book consists of 13 chapters, each focusing on a certain aspect of the problem. The book chapters are divided into three sections: physical biometrics, behavioral biometrics and medical biometrics. The key objective of the book is to provide comprehensive reference and text on human authentication and people identity verification from both physiological, behavioural and other points of view. It aims to publish new insights into current innovations in computer systems and technology for biometrics development and its applications. The book was reviewed by the editor Dr. Jucheng Yang, and many of the guest editors, such as Dr. Girija Chetty, Dr. Norman Poh, Dr. Loris Nanni, Dr. Jianjiang Feng, Dr. Dongsun Park, Dr. Sook Yoon and so on, who also made a significant contribution to the book

    Training methods for facial image comparison: a literature review

    Get PDF
    This literature review was commissioned to explore the psychological literature relating to facial image comparison with a particular emphasis on whether individuals can be trained to improve performance on this task. Surprisingly few studies have addressed this question directly. As a consequence, this review has been extended to cover training of face recognition and training of different kinds of perceptual comparisons where we are of the opinion that the methodologies or findings of such studies are informative. The majority of studies of face processing have examined face recognition, which relies heavily on memory. This may be memory for a face that was learned recently (e.g. minutes or hours previously) or for a face learned longer ago, perhaps after many exposures (e.g. friends, family members, celebrities). Successful face recognition, irrespective of the type of face, relies on the ability to retrieve the to-berecognised face from long-term memory. This memory is then compared to the physically present image to reach a recognition decision. In contrast, in face matching task two physical representations of a face (live, photographs, movies) are compared and so long-term memory is not involved. Because the comparison is between two present stimuli rather than between a present stimulus and a memory, one might expect that face matching, even if not an easy task, would be easier to do and easier to learn than face recognition. In support of this, there is evidence that judgment tasks where a presented stimulus must be judged by a remembered standard are generally more cognitively demanding than judgments that require comparing two presented stimuli Davies & Parasuraman, 1982; Parasuraman & Davies, 1977; Warm and Dember, 1998). Is there enough overlap between face recognition and matching that it is useful to look at the literature recognition? No study has directly compared face recognition and face matching, so we turn to research in which people decided whether two non-face stimuli were the same or different. In these studies, accuracy of comparison is not always better when the comparator is present than when it is remembered. Further, all perceptual factors that were found to affect comparisons of simultaneously presented objects also affected comparisons of successively presented objects in qualitatively the same way. Those studies involved judgments about colour (Newhall, Burnham & Clark, 1957; Romero, Hita & Del Barco, 1986), and shape (Larsen, McIlhagga & Bundesen, 1999; Lawson, BĂŒlthoff & Dumbell, 2003; Quinlan, 1995). Although one must be cautious in generalising from studies of object processing to studies of face processing (see, e.g., section comparing face processing to object processing), from these kinds of studies there is no evidence to suggest that there are qualitative differences in the perceptual aspects of how recognition and matching are done. As a result, this review will include studies of face recognition skill as well as face matching skill. The distinction between face recognition involving memory and face matching not involving memory is clouded in many recognition studies which require observers to decide which of many presented faces matches a remembered face (e.g., eyewitness studies). And of course there are other forensic face-matching tasks that will require comparison to both presented and remembered comparators (e.g., deciding whether any person in a video showing a crowd is the target person). For this reason, too, we choose to include studies of face recognition as well as face matching in our revie

    Identification and Security Implications of Biometrics

    Get PDF
    The usage of biometrics has become more frequent over the past couple of decades, notably due to technological advancements. Evolving technology in the field of biometrics has also led to increased accuracy of associated software, which have provided the opportunity to use a multitude of different human characteristics for identification and/or verification purposes. The current study assessed the usage of biometrics in casinos, hospitals, and law enforcement agencies using a survey methodology. Results indicated that privacy concerns related to the use of biometrics may not be as prevalent as indicated in the literature. Additionally, results indicated that the utilization of biometrics has led to increased accuracy in identification and verification processes, led to enhanced security, and would be highly recommended to other institutions. Information obtained from the literature notes the racial bias in facial recognition technologies due to algorithmic development based solely upon features of Caucasian individuals. Efforts need to be made to create facial recognition algorithms that are more racially and ethnically diverse

    Usage of Infrared-Based Technologies in Forensic Sciences

    Get PDF
    Infrared (IR) radiation comprises a beam located in the electromagnetic radiation family; it arises from the thermal vibrations of radiation that have longer wavelengths than visible light, but shorter wavelengths than microwave radiation. Its wavelength is between 750 nm and 1 mm. The amount of thermal IR radiation emitted by an object is associated with the temperature of the object, the surface area of the object and the spreading of light. IR-based technologies have been demonstrated as a method of evidence identification in forensic sciences in addition to many daily uses
    • 

    corecore