66 research outputs found

    Intuitionistic fuzzy XML query matching and rewriting

    Get PDF
    With the emergence of XML as a standard for data representation, particularly on the web, the need for intelligent query languages that can operate on XML documents with structural heterogeneity has recently gained a lot of popularity. Traditional Information Retrieval and Database approaches have limitations when dealing with such scenarios. Therefore, fuzzy (flexible) approaches have become the predominant. In this thesis, we propose a new approach for approximate XML query matching and rewriting which aims at achieving soft matching of XML queries with XML data sources following different schemas. Unlike traditional querying approaches, which require exact matching, the proposed approach makes use of Intuitionistic Fuzzy Trees to achieve approximate (soft) query matching. Through this new approach, not only the exact answer of a query, but also approximate answers are retrieved. Furthermore, partial results can be obtained from multiple data sources and merged together to produce a single answer to a query. The proposed approach introduced a new tree similarity measure that considers the minimum and maximum degrees of similarity/inclusion of trees that are based on arc matching. New techniques for soft node and arc matching were presented for matching queries against data sources with highly varied structures. A prototype was developed to test the proposed ideas and it proved the ability to achieve approximate matching for pattern queries with a number of XML schemas and rewrite the original query so that it obtain results from the underlying data sources. This has been achieved through several novel algorithms which were tested and proved efficiency and low CPU/Memory cost even for big number of data sources

    A Framework for Top-K Queries over Weighted RDF Graphs

    Get PDF
    abstract: The Resource Description Framework (RDF) is a specification that aims to support the conceptual modeling of metadata or information about resources in the form of a directed graph composed of triples of knowledge (facts). RDF also provides mechanisms to encode meta-information (such as source, trust, and certainty) about facts already existing in a knowledge base through a process called reification. In this thesis, an extension to the current RDF specification is proposed in order to enhance RDF triples with an application specific weight (cost). Unlike reification, this extension treats these additional weights as first class knowledge attributes in the RDF model, which can be leveraged by the underlying query engine. Additionally, current RDF query languages, such as SPARQL, have a limited expressive power which limits the capabilities of applications that use them. Plus, even in the presence of language extensions, current RDF stores could not provide methods and tools to process extended queries in an efficient and effective way. To overcome these limitations, a set of novel primitives for the SPARQL language is proposed to express Top-k queries using traditional query patterns as well as novel predicates inspired by those from the XPath language. Plus, an extended query processor engine is developed to support efficient ranked path search, join, and indexing. In addition, several query optimization strategies are proposed, which employ heuristics, advanced indexing tools, and two graph metrics: proximity and sub-result inter-arrival time. These strategies aim to find join orders that reduce the total query execution time while avoiding worst-case pattern combinations. Finally, extensive experimental evaluation shows that using these two metrics in query optimization has a significant impact on the performance and efficiency of Top-k queries. Further experiments also show that proximity and inter-arrival have an even greater, although sometimes undesirable, impact when combined through aggregation functions. Based on these results, a hybrid algorithm is proposed which acknowledges that proximity is more important than inter-arrival time, due to its more complete nature, and performs a fine-grained combination of both metrics by analyzing the differences between their individual scores and performing the aggregation only if these differences are negligible.Dissertation/ThesisM.S. Computer Science 201

    Solving the intractable problem: optimal performance for worst case scenarios in XML twig pattern matching

    Get PDF
    In the history of databases, eXtensible Markup Language (XML) has been thought of as the standard format to store and exchange semi-structured data. With the advent of IoT, XML technologies can play an important role in addressing the issue of processing a massive amount of data generated from heterogeneous devices. As the number and complexity of such datasets increases there is a need for algorithms which are able to index and retrieve XML data efficiently even for complex queries. In this context twig pattern matching , finding all occurrences of a twig pattern query (TPQ), is a core operation in XML query processing. Until now holistic joins have been considered the state-of-the-art TPQ processing algorithms, but they fail to guarantee an optimal evaluation except at the expense of excessive storage costs which limit their scope in large datasets. In this article, we introduce a new approach which significantly outperforms earlier methods in terms of both the size of the intermediate storage and query running time. The approach presented here uses Child Prime Labels (Alsubai & North, 2018) to improve the filtering phase of bottom-up twig matching algorithms and a novel algorithm which avoids the use of stacks, thus improving TPQs processing efficiency. Several experiments were conducted on common benchmarks such as DBLP, XMark and TreeBank datasets to study the performance of the new approach. Multiple analyses on a range of twig pattern queries are presented to demonstrate the statistical significance of the improvements

    Probabilistic resource space model for managing resources in cyber-physical society

    Get PDF
    Classification is the most basic method for organizing resources in the physical space, cyber space, socio space and mental space. To create a unified model that can effectively manage resources in different spaces is a challenge. The Resource Space Model RSM is to manage versatile resources with a multi-dimensional classification space. It supports generalization and specialization on multi-dimensional classifications. This paper introduces the basic concepts of RSM, and proposes the Probabilistic Resource Space Model, P-RSM, to deal with uncertainty in managing various resources in different spaces of the cyber-physical society. P-RSM’s normal forms, operations and integrity constraints are developed to support effective management of the resource space. Characteristics of the P-RSM are analyzed through experiments. This model also enables various services to be described, discovered and composed from multiple dimensions and abstraction levels with normal form and integrity guarantees. Some extensions and applications of the P-RSM are introduced

    Child Prime Label Approaches to Evaluate XML Structured Queries

    Get PDF
    The adoption of the eXtensible Markup Language (XML) as the standard format to store and exchange semi-structure data has been gaining momentum. The growing number of XML documents leads to the need for appropriate XML querying algorithms which are able to retrieve XML data efficiently. Due to the importance of twig pattern matching in XML retrieval systems, finding all matching occurrences of a tree pattern query in an XML document is often considered as a specific task for XML databases as well as a core operation in XML query processing. This thesis presents a design and implementation of a new indexing technique, called the Child Prime Label (CPL) which exploits the property of prime numbers to identify Parent-Child (P-C) edges in twig pattern queries (TPQs) during query evaluation. The CPL approach can be incorporated efficiently within the existing labelling schemes. The major contributions of this thesis can be seen as a set of novel twig matching algorithms which apply the CPL approach and focus on reducing the overhead of storing useless elements and performing unnecessary computations during the output enumeration. The research presented here is the first to provide an efficient and general solution for TPQs containing ordering constraints and positional predicates specified by the XML query languages. To evaluate the CPL approaches, the holistic model was implemented as an experimental prototype in which the approaches proposed are compared against state-of-the-art holistic twig algorithms. Extensive performance studies on various real-world and artificial datasets were conducted to demonstrate the significant improvement of the CPL approaches over the previous indexing and querying methods. The experimental results demonstrate the validity and improvements of the new algorithms over other related methods on common various subclasses of TPQs. Moreover, the scalability tests reveal that the new algorithms are more suitable for processing large XML datasets

    Teak: A Novel Computational And Gui Software Pipeline For Reconstructing Biological Networks, Detecting Activated Biological Subnetworks, And Querying Biological Networks.

    Get PDF
    As high-throughput gene expression data becomes cheaper and cheaper, researchers are faced with a deluge of data from which biological insights need to be extracted and mined since the rate of data accumulation far exceeds the rate of data analysis. There is a need for computational frameworks to bridge the gap and assist researchers in their tasks. The Topology Enrichment Analysis frameworK (TEAK) is an open source GUI and software pipeline that seeks to be one of many tools that fills in this gap and consists of three major modules. The first module, the Gene Set Cultural Algorithm, de novo infers biological networks from gene sets using the KEGG pathways as prior knowledge. The second and third modules query against the KEGG pathways using molecular profiling data and query graphs, respectively. In particular, the second module, also called TEAK, is a network partitioning module that partitions the KEGG pathways into both linear and nonlinear subpathways. In conjunction with molecular profiling data, the subpathways are ranked and displayed to the user within the TEAK GUI. Using a public microarray yeast data set, previously unreported fitness defects for dpl1 delta and lag1 delta mutants under conditions of nitrogen limitation were found using TEAK. Finally, the third module, the Query Structure Enrichment Analysis framework, is a network query module that allows researchers to query their biological hypotheses in the form of Directed Acyclic Graphs against the KEGG pathways

    Insights into Genome Functional Organisation through the Analysis of Interaction Networks

    Get PDF
    Using computational techniques to identify orthology and operon structure, it is possible to find functional interactions between genes, which, together, define the genetic interactome. These large networks contain information about the relationships between phenotypes in organisms as genes responsible for related abilities are often co-regulated and reasserting of these genes can be detected in the operon structure. However, these networks are too large to analyse by hand In order to practically analyse the networks, a computational tool, gisql, was developed and, using this tool, the connectivity patterns in the genetic interactome can be analysed to understand high-level organisation of the genome and to narrow the list of candidate genes for wet lab analysis. The many strains of Escherichia coli are interesting subjects as there are many sequenced strains and they show highly variable pathogenic abilities. Analysis shows that the pathogenic genes have a strong tendency to connect to genes ubiquitous in the E. coli pan-genome. The Rhizobiales, including Sinorhizobium meliloti and Ochrobactrum anthropi, are multi-chromosomal eukaryote-associated bacteria and a significant history of horizontal transfer. Regions of the pSymB megaplasmid of S. meliloti which cannot be deleted via transposon-targeted homologous recombination were shown to be significantly more connected to the main chromosome. Targets for functional complementation of deletions in pSymB in S. meliloti using genes from O. anthropi were identified and unusual connectivity patterns of orthologs were identified. Finally, a putative cytokinin receptor in the Rhizobiaceæ, likely involved in symbiosis with plant hosts, was identified. Thanks to the flexibility of gisql, these analyses were straight-forward and fast to develop

    Using semantics in XML query processing

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Probabilistic XML: Models and Complexity

    Full text link
    corecore