3,249 research outputs found

    The International Linear Collider

    Full text link
    In this article, we describe the key features of the recently completed technical design for the International Linear Collider (ILC), a 200-500 GeV linear electron-positron collider (expandable to 1 TeV) that is based on 1.3 GHz superconducting radio-frequency (SCRF) technology. The machine parameters and detector characteristics have been chosen to complement the Large Hadron Collider physics, including the discovery of the Higgs boson, and to further exploit this new particle physics energy frontier with a precision instrument. The linear collider design is the result of nearly twenty years of R&D, resulting in a mature conceptual design for the ILC project that reflects an international consensus. We summarize the physics goals and capability of the ILC, the enabling R&D and resulting accelerator design, as well as the concepts for two complementary detectors. The ILC is technically ready to be proposed and built as a next generation lepton collider, perhaps to be built in stages beginning as a Higgs factory.Comment: 41 page

    A Sub-λ3\rm \lambda^{3}-Volume Cantilever-based Fabry-P\'erot Cavity

    Full text link
    We report on the realization of an open plane-concave Fabry-P\'erot resonator with a mode volume below λ3\lambda^3 at optical frequencies. We discuss some of the less common features of this new microcavity regime and show that the ultrasmall mode volume allows us to detect cavity resonance shifts induced by single nanoparticles even at quality factors as low as 100100. Being based on low-reflectivity micromirrors fabricated on a silicon cantilever, our experimental arrangement provides broadband operation, tunability of the cavity resonance, lateral scanning and promise for optomechanical studies

    Study to develop process controls for line certification on hybrid microcircuits Final report, Nov. 1970 - Feb. 1971

    Get PDF
    Basic process steps for fabrication of thick or thin film microcircuits for NASA us

    Engineering evaluations and studies. Volume 3: Exhibit C

    Get PDF
    High rate multiplexes asymmetry and jitter, data-dependent amplitude variations, and transition density are discussed

    Error processes in the integration of digital cartographic data in geographic information systems.

    Get PDF
    Errors within a Geographic Information System (GIS) arise from several factors. In the first instance receiving data from a variety of different sources results in a degree of incompatibility between such information. Secondly, the very processes used to acquire the information into the GIS may in fact degrade the quality of the data. If geometric overlay (the very raison d'etre of many GISs) is to be performed, such inconsistencies need to be carefully examined and dealt with. A variety of techniques exist for the user to eliminate such problems, but all of these tend to rely on the geometry of the information, rather than on its meaning or nature. This thesis explores the introduction of error into GISs and the consequences this has for any subsequent data analysis. Techniques for error removal at the overlay stage are also examined and improved solutions are offered. Furthermore, the thesis also looks at the role of the data model and the potential detrimental effects this can have, in forcing the data to be organised into a pre-defined structure
    corecore