300 research outputs found

    Matching Renewable Energy Supply and Demand in Green Datacenters

    Get PDF
    In this paper, we propose GreenSlot, a scheduler for parallel batch jobs in a datacenter powered by a photovoltaic solar array and the electrical grid (as a backup). GreenSlot predicts the amount of solar energy that will be available in the near future, and schedules the workload to maximize the green energy consumption while meeting the jobs’ deadlines. If grid energy must be used to avoid deadline violations, the scheduler selects times when it is cheap. Our results for both scientific computing workloads and data processing workloads demonstrate that GreenSlot can increase solar energy consumption by up to 117% and decrease energy cost by up to 39%, compared to conventional schedulers. Based on these positive results, we conclude that green datacenters and green-energy-aware scheduling can have a significant role in building a more sustainable IT ecosystem

    Matching Renewable Energy Supply and Demand in Green Datacenters

    Get PDF
    In this paper, we propose GreenSlot, a scheduler for parallel batch jobs in a datacenter powered by a photovoltaic solar array and the electrical grid (as a backup). GreenSlot predicts the amount of solar energy that will be available in the near future, and schedules the workload to maximize the green energy consumption while meeting the jobs’ deadlines. If grid energy must be used to avoid deadline violations, the scheduler selects times when it is cheap. Our results for both scientific computing workloads and data processing workloads demonstrate that GreenSlot can increase solar energy consumption by up to 117% and decrease energy cost by up to 39%, compared to conventional schedulers. Based on these positive results, we conclude that green datacenters and green-energy-aware scheduling can have a significant role in building a more sustainable IT ecosystem

    Toward sustainable data centers: a comprehensive energy management strategy

    Get PDF
    Data centers are major contributors to the emission of carbon dioxide to the atmosphere, and this contribution is expected to increase in the following years. This has encouraged the development of techniques to reduce the energy consumption and the environmental footprint of data centers. Whereas some of these techniques have succeeded to reduce the energy consumption of the hardware equipment of data centers (including IT, cooling, and power supply systems), we claim that sustainable data centers will be only possible if the problem is faced by means of a holistic approach that includes not only the aforementioned techniques but also intelligent and unifying solutions that enable a synergistic and energy-aware management of data centers. In this paper, we propose a comprehensive strategy to reduce the carbon footprint of data centers that uses the energy as a driver of their management procedures. In addition, we present a holistic management architecture for sustainable data centers that implements the aforementioned strategy, and we propose design guidelines to accomplish each step of the proposed strategy, referring to related achievements and enumerating the main challenges that must be still solved.Peer ReviewedPostprint (author's final draft

    Climate policy costs of spatially unbalanced growth in electricity demand: the case of datacentres. ESRI Working Paper No. 657 March 2020

    Get PDF
    We investigate the power system implications of the anticipated expansion in electricity demand by datacentres. We perform a joint optimisation of Generation and Transmission Expansion Planning considering uncertainty in future datacentre growth under various climate policies. Datacentre expansion imposes significant extra costs on the power system, even under the cheapest policy option. A renewable energy target is more costly than a technology-neutral carbon reduction policy, and the divergence in costs increases non-linearly in electricity demand. Moreover, a carbon reduction policy is more robust to uncertainties in projected demand than a renewable policy. High renewable targets crowd out other low-carbon options such as Carbon Capture and Sequestration. The results suggest that energy policy should be reviewed to focus on technology-neutral carbon reduction policies

    Untangling Carbon-free Energy Attribution and Carbon Intensity Estimation for Carbon-aware Computing

    Full text link
    Many organizations, including governments, utilities, and businesses, have set ambitious targets to reduce carbon emissions as a part of their sustainability goals. To achieve these targets, these organizations increasingly use power purchase agreements (PPAs) to obtain renewable energy credits, which they use to offset their ``brown'' energy consumption. However, the details of these PPAs are often private and not shared with important stakeholders, such as grid operators and carbon information services, who monitor and report the grid's carbon emissions. This often results in incorrect carbon accounting where the same renewable energy production could be factored into grid carbon emission reports and also separately claimed by organizations that own PPAs. Such ``double counting'' of renewable energy production could lead to organizations with PPAs to understate their carbon emissions and overstate their progress towards their sustainability goals. Further, we show that commonly-used carbon reduction measures, such as load shifting, can have the opposite effect of increasing emissions if such measures were to use inaccurate carbon intensity signals. For instance, users may increase energy consumption because the grid's carbon intensity appears low even though carbon intensity may actually be high when renewable energy attributed to PPAs are excluded. Unfortunately, there is currently no consensus on how to accurately compute the grid's carbon intensity by properly accounting for PPAs. The goal of our work is to shed quantitative light on the renewable energy attribution problem and evaluate its impact of inaccurate accounting on carbon-aware systems

    Strategies for improving the sustainability of data centers via energy mix, energy conservation, and circular energy

    Get PDF
    Information and communication technologies (ICT) are increasingly permeating our daily life and we ever more commit our data to the cloud. Events like the COVID-19 pandemic put an exceptional burden upon ICT. This involves increasing implementation and use of data centers, which increased energy use and environmental impact. The scope of this work is to summarize the present situation on data centers as to environmental impact and opportunities for improvement. First, we introduce the topic, presenting estimated energy use and emissions. Then, we review proposed strategies for energy efficiency and conservation in data centers. Energy uses pertain to power distribution, ICT, and non-ICT equipment (e.g., cooling). Existing and prospected strategies and initiatives in these sectors are identified. Among key elements are innovative cooling techniques, natural resources, automation, low-power electronics, and equipment with extended thermal limits. Research perspectives are identified and estimates of improvement opportunities are mentioned. Finally, we present an overview on existing metrics, regulatory framework, and bodies concerned
    • …
    corecore