13,185 research outputs found

    From the Ising and Potts models to the general graph homomorphism polynomial

    Full text link
    In this note we study some of the properties of the generating polynomial for homomorphisms from a graph to at complete weighted graph on qq vertices. We discuss how this polynomial relates to a long list of other well known graph polynomials and the partition functions for different spin models, many of which are specialisations of the homomorphism polynomial. We also identify the smallest graphs which are not determined by their homomorphism polynomials for q=2q=2 and q=3q=3 and compare this with the corresponding minimal examples for the UU-polynomial, which generalizes the well known Tutte-polynomal.Comment: V2. Extended versio

    Pattern vectors from algebraic graph theory

    Get PDF
    Graphstructures have proven computationally cumbersome for pattern analysis. The reason for this is that, before graphs can be converted to pattern vectors, correspondences must be established between the nodes of structures which are potentially of different size. To overcome this problem, in this paper, we turn to the spectral decomposition of the Laplacian matrix. We show how the elements of the spectral matrix for the Laplacian can be used to construct symmetric polynomials that are permutation invariants. The coefficients of these polynomials can be used as graph features which can be encoded in a vectorial manner. We extend this representation to graphs in which there are unary attributes on the nodes and binary attributes on the edges by using the spectral decomposition of a Hermitian property matrix that can be viewed as a complex analogue of the Laplacian. To embed the graphs in a pattern space, we explore whether the vectors of invariants can be embedded in a low- dimensional space using a number of alternative strategies, including principal components analysis ( PCA), multidimensional scaling ( MDS), and locality preserving projection ( LPP). Experimentally, we demonstrate that the embeddings result in well- defined graph clusters. Our experiments with the spectral representation involve both synthetic and real- world data. The experiments with synthetic data demonstrate that the distances between spectral feature vectors can be used to discriminate between graphs on the basis of their structure. The real- world experiments show that the method can be used to locate clusters of graphs

    On the unimodality of independence polynomials of some graphs

    Full text link
    In this paper we study unimodality problems for the independence polynomial of a graph, including unimodality, log-concavity and reality of zeros. We establish recurrence relations and give factorizations of independence polynomials for certain classes of graphs. As applications we settle some unimodality conjectures and problems.Comment: 17 pages, to appear in European Journal of Combinatoric
    corecore