16,436 research outputs found

    Matching random colored points with rectangles

    Get PDF
    Let S ¿ [0, 1]2 be a set of n points, randomly and uniformly selected. Let R ¿ B be a random partition, or coloring, of S in which each point of S is included in R uniformly at random with probability 1/2. We study the random number M(n) of points of S that are covered by the rectangles of a maximum strong matching of S with axis-aligned rectangles. The matching consists of closed rectangles that cover exactly two points of S of the same color. A matching is strong if all its rectangles are pairwise disjoint. We prove that almost surely M(n) = 0.83 n for n large enough. Our approach is based on modeling a deterministic greedy matching algorithm, that runs over the random point set, as a Markov chain.Postprint (published version

    Enumeration of tilings of quartered Aztec rectangles

    Get PDF
    We generalize a theorem of W. Jockusch and J. Propp on quartered Aztec diamonds by enumerating the tilings of quartered Aztec rectangles. We use subgraph replacement method to transform the dual graph of a quartered Aztec rectangle to the dual graph of a quartered lozenge hexagon, and then use Lindstr\"{o}m-Gessel-Viennot methodology to find the number of tilings of a quartered lozenge hexagon.Comment: 28 page

    Pattern Matching for sets of segments

    Full text link
    In this paper we present algorithms for a number of problems in geometric pattern matching where the input consist of a collections of segments in the plane. Our work consists of two main parts. In the first, we address problems and measures that relate to collections of orthogonal line segments in the plane. Such collections arise naturally from problems in mapping buildings and robot exploration. We propose a new measure of segment similarity called a \emph{coverage measure}, and present efficient algorithms for maximising this measure between sets of axis-parallel segments under translations. Our algorithms run in time O(n^3\polylog n) in the general case, and run in time O(n^2\polylog n) for the case when all segments are horizontal. In addition, we show that when restricted to translations that are only vertical, the Hausdorff distance between two sets of horizontal segments can be computed in time roughly O(n^{3/2}{\sl polylog}n). These algorithms form significant improvements over the general algorithm of Chew et al. that takes time O(n4log2n)O(n^4 \log^2 n). In the second part of this paper we address the problem of matching polygonal chains. We study the well known \Frd, and present the first algorithm for computing the \Frd under general translations. Our methods also yield algorithms for computing a generalization of the \Fr distance, and we also present a simple approximation algorithm for the \Frd that runs in time O(n^2\polylog n).Comment: To appear in the 12 ACM Symposium on Discrete Algorithms, Jan 200

    Applications of Graphical Condensation for Enumerating Matchings and Tilings

    Get PDF
    A technique called graphical condensation is used to prove various combinatorial identities among numbers of (perfect) matchings of planar bipartite graphs and tilings of regions. Graphical condensation involves superimposing matchings of a graph onto matchings of a smaller subgraph, and then re-partitioning the united matching (actually a multigraph) into matchings of two other subgraphs, in one of two possible ways. This technique can be used to enumerate perfect matchings of a wide variety of bipartite planar graphs. Applications include domino tilings of Aztec diamonds and rectangles, diabolo tilings of fortresses, plane partitions, and transpose complement plane partitions.Comment: 25 pages; 21 figures Corrected typos; Updated references; Some text revised, but content essentially the sam
    corecore