10,181 research outputs found

    Matching in Selective and Balanced Representation Space for Treatment Effects Estimation

    Full text link
    The dramatically growing availability of observational data is being witnessed in various domains of science and technology, which facilitates the study of causal inference. However, estimating treatment effects from observational data is faced with two major challenges, missing counterfactual outcomes and treatment selection bias. Matching methods are among the most widely used and fundamental approaches to estimating treatment effects, but existing matching methods have poor performance when facing data with high dimensional and complicated variables. We propose a feature selection representation matching (FSRM) method based on deep representation learning and matching, which maps the original covariate space into a selective, nonlinear, and balanced representation space, and then conducts matching in the learned representation space. FSRM adopts deep feature selection to minimize the influence of irrelevant variables for estimating treatment effects and incorporates a regularizer based on the Wasserstein distance to learn balanced representations. We evaluate the performance of our FSRM method on three datasets, and the results demonstrate superiority over the state-of-the-art methods.Comment: Proceedings of the 29th ACM International Conference on Information and Knowledge Management (CIKM '20

    Deep Causal Learning: Representation, Discovery and Inference

    Full text link
    Causal learning has attracted much attention in recent years because causality reveals the essential relationship between things and indicates how the world progresses. However, there are many problems and bottlenecks in traditional causal learning methods, such as high-dimensional unstructured variables, combinatorial optimization problems, unknown intervention, unobserved confounders, selection bias and estimation bias. Deep causal learning, that is, causal learning based on deep neural networks, brings new insights for addressing these problems. While many deep learning-based causal discovery and causal inference methods have been proposed, there is a lack of reviews exploring the internal mechanism of deep learning to improve causal learning. In this article, we comprehensively review how deep learning can contribute to causal learning by addressing conventional challenges from three aspects: representation, discovery, and inference. We point out that deep causal learning is important for the theoretical extension and application expansion of causal science and is also an indispensable part of general artificial intelligence. We conclude the article with a summary of open issues and potential directions for future work

    Deep Causal Learning for Robotic Intelligence

    Full text link
    This invited review discusses causal learning in the context of robotic intelligence. The paper introduced the psychological findings on causal learning in human cognition, then it introduced the traditional statistical solutions on causal discovery and causal inference. The paper reviewed recent deep causal learning algorithms with a focus on their architectures and the benefits of using deep nets and discussed the gap between deep causal learning and the needs of robotic intelligence
    • …
    corecore