7,033 research outputs found

    D2-Net: A Trainable CNN for Joint Detection and Description of Local Features

    Full text link
    In this work we address the problem of finding reliable pixel-level correspondences under difficult imaging conditions. We propose an approach where a single convolutional neural network plays a dual role: It is simultaneously a dense feature descriptor and a feature detector. By postponing the detection to a later stage, the obtained keypoints are more stable than their traditional counterparts based on early detection of low-level structures. We show that this model can be trained using pixel correspondences extracted from readily available large-scale SfM reconstructions, without any further annotations. The proposed method obtains state-of-the-art performance on both the difficult Aachen Day-Night localization dataset and the InLoc indoor localization benchmark, as well as competitive performance on other benchmarks for image matching and 3D reconstruction.Comment: Accepted at CVPR 201

    Hybrid Scene Compression for Visual Localization

    Full text link
    Localizing an image wrt. a 3D scene model represents a core task for many computer vision applications. An increasing number of real-world applications of visual localization on mobile devices, e.g., Augmented Reality or autonomous robots such as drones or self-driving cars, demand localization approaches to minimize storage and bandwidth requirements. Compressing the 3D models used for localization thus becomes a practical necessity. In this work, we introduce a new hybrid compression algorithm that uses a given memory limit in a more effective way. Rather than treating all 3D points equally, it represents a small set of points with full appearance information and an additional, larger set of points with compressed information. This enables our approach to obtain a more complete scene representation without increasing the memory requirements, leading to a superior performance compared to previous compression schemes. As part of our contribution, we show how to handle ambiguous matches arising from point compression during RANSAC. Besides outperforming previous compression techniques in terms of pose accuracy under the same memory constraints, our compression scheme itself is also more efficient. Furthermore, the localization rates and accuracy obtained with our approach are comparable to state-of-the-art feature-based methods, while using a small fraction of the memory.Comment: Published at CVPR 201

    Proposal Flow: Semantic Correspondences from Object Proposals

    Get PDF
    Finding image correspondences remains a challenging problem in the presence of intra-class variations and large changes in scene layout. Semantic flow methods are designed to handle images depicting different instances of the same object or scene category. We introduce a novel approach to semantic flow, dubbed proposal flow, that establishes reliable correspondences using object proposals. Unlike prevailing semantic flow approaches that operate on pixels or regularly sampled local regions, proposal flow benefits from the characteristics of modern object proposals, that exhibit high repeatability at multiple scales, and can take advantage of both local and geometric consistency constraints among proposals. We also show that the corresponding sparse proposal flow can effectively be transformed into a conventional dense flow field. We introduce two new challenging datasets that can be used to evaluate both general semantic flow techniques and region-based approaches such as proposal flow. We use these benchmarks to compare different matching algorithms, object proposals, and region features within proposal flow, to the state of the art in semantic flow. This comparison, along with experiments on standard datasets, demonstrates that proposal flow significantly outperforms existing semantic flow methods in various settings.Comment: arXiv admin note: text overlap with arXiv:1511.0506
    • …
    corecore