4,337 research outputs found

    Beyond generic lifecycles : reusable modeling of custom-fit management workflows for cloud applications

    Get PDF
    Automated management and orchestration of cloud applications have become increasingly important, partly due to the large skills shortage in IT operations and the increasing complexity of cloud applications. Cloud modeling languages play an important role in this, both for describing the structure of a cloud application and specifying the management actions around it. The TOSCA cloud model standard recently defined declarative workflows as the preferred way to specify these management actions but, as noted in the standard itself, this is far from ideal. This paper draws lessons from six years of using declarative workflows in Juju for deploying and managing complex platforms such as OpenStack and Kubernetes in production. This confirms the limitations: declarative workflows are inflexible, hard to reuse, and allow for related components to become silently incompatible. This paper proposes the reactive pattern to solve these issues by enabling the creation of emergent workflows using declarative flags and handlers, which can be easily grouped into reusable layers. After more than two years of using this pattern in production as part of our charms. reactive framework, it is clear that it enables reusability and ensures compatibility: 67% of reactive charms share parts of the management workflow and 73% of reactive charms share a relationship workflow

    Logic Programming Applications: What Are the Abstractions and Implementations?

    Full text link
    This article presents an overview of applications of logic programming, classifying them based on the abstractions and implementations of logic languages that support the applications. The three key abstractions are join, recursion, and constraint. Their essential implementations are for-loops, fixed points, and backtracking, respectively. The corresponding kinds of applications are database queries, inductive analysis, and combinatorial search, respectively. We also discuss language extensions and programming paradigms, summarize example application problems by application areas, and touch on example systems that support variants of the abstractions with different implementations

    Computer modeling of human decision making

    Get PDF
    Models of human decision making are reviewed. Models which treat just the cognitive aspects of human behavior are included as well as models which include motivation. Both models which have associated computer programs, and those that do not, are considered. Since flow diagrams, that assist in constructing computer simulation of such models, were not generally available, such diagrams were constructed and are presented. The result provides a rich source of information, which can aid in construction of more realistic future simulations of human decision making

    Data-Oriented Declarative Language for Optimizing Business Processes

    Get PDF
    There is a signifi cant number of declarative languages to describe business processes. They tend to be used when business processes need to be fl exible and adaptable, being not possible to use an imperative description. Declarative languages in business process have been traditionally used to describe the order of activities, specifi cally the order allowed or prohibited. Unfortunately, none of them is worried about a declarative description of exchanged data between the activities and how they can infl uence the model. In this paper, we analyse the data description capacity of a variety of declarative languages in business processes. Using this analysis, we have detected the necessity to include data exchanged aspects in the declarative descriptions. In order to solve the gap, we propose a Data-Oriented Optimization Declarative LanguagE, called DOODLE, which includes the process requirements referred to data description, and the possibility to include an optimization function about the process output data

    SeaFlows – A Compliance Checking Framework for Supporting the Process Lifecycle

    Get PDF
    Compliance-awareness is undoubtedly of utmost importance for companies nowadays. Even though an automated approach to compliance checking and enforcement has been advocated in recent literature as a means to tame the high costs for compliance-awareness, the potential of automated mechanisms for supporting business process compliance is not yet depleted. Business process compliance deals with the question whether business processes are designed and executed in harmony with imposed regulations. In this thesis, we propose a compliance checking framework for automating business process compliance verification within process management systems (PrMSs). Such process-aware information systems constitute an ideal environment for the systematic integration of automated business process compliance checking since they bring together different perspectives on a business process and provide access to process data. The objective of this thesis is to devise a framework that enhances PrMSs with compliance checking functionality. As PrMSs enable both the design and the execution of business processes, the designated compliance checking framework must accommodate mechanisms to support these different phases of the process lifecycle. A compliance checking framework essentially consists of two major building blocks: a compliance rule language to capture compliance requirements in a checkable manner and compliance checking mechanisms for verification of process models and process instances. Key to the practical application of a compliance checking framework will be its ability to provide comprehensive and meaningful compliance diagnoses. Based on the requirements analysis and meta-analyses, we developed the SeaFlows compliance checking framework proposed in this thesis. We introduce the compliance rule graph (CRG) language for modeling declarative compliance rules. The language provides modeling primitives with a notation based on nodes and edges. A compliance rule is modeled by defining a pattern of activity executions activating a compliance rule and consequences that have to apply once a rule becomes activated. In order to enable compliance verification of process models and process instances, the CRG language is operationalized. Key to this approach is the exploitation of the graph structure of CRGs for representing compliance states of the respective CRGs in a transparent and interpretable manner. For that purpose, we introduce execution states to mark CRG nodes in order to indicate which parts of the CRG patterns can be observed in a process execution. By providing rules to alter the markings when a new event is processed, we enable to update the compliance state for each observed event. The beauty of our approach is that both design and runtime can be supported using the same mechanisms. Thus, no transformation of compliance rules in different representations for process model verification or for compliance monitoring becomes necessary. At design time, the proposed approach can be applied to explore a process model and to detect which compliance states with respect to imposed CRGs a process model is able to yield. At runtime, the effective compliance state of process instances can be monitored taking also the future predefined in the underlying process model into account. As compliance states are encoded based on the CRG structure, fine-grained and intelligible compliance diagnoses can be derived in each detected compliance state. Specifically, it becomes possible to provide feedback not only on the general enforcement of a compliance rule but also at the level of particular activations of the rule contained in a process. In case of compliance violations, this can explain and pinpoint the source of violations in a process. In addition, measures to satisfy a compliance rule can be easily derived that can be seized for providing proactive support to comply. Altogether, the SeaFlows compliance checking framework proposed in this thesis can be embedded into an overall integrated compliance management framework
    • …
    corecore