464 research outputs found

    JGraphT -- A Java library for graph data structures and algorithms

    Full text link
    Mathematical software and graph-theoretical algorithmic packages to efficiently model, analyze and query graphs are crucial in an era where large-scale spatial, societal and economic network data are abundantly available. One such package is JGraphT, a programming library which contains very efficient and generic graph data-structures along with a large collection of state-of-the-art algorithms. The library is written in Java with stability, interoperability and performance in mind. A distinctive feature of this library is the ability to model vertices and edges as arbitrary objects, thereby permitting natural representations of many common networks including transportation, social and biological networks. Besides classic graph algorithms such as shortest-paths and spanning-tree algorithms, the library contains numerous advanced algorithms: graph and subgraph isomorphism; matching and flow problems; approximation algorithms for NP-hard problems such as independent set and TSP; and several more exotic algorithms such as Berge graph detection. Due to its versatility and generic design, JGraphT is currently used in large-scale commercial, non-commercial and academic research projects. In this work we describe in detail the design and underlying structure of the library, and discuss its most important features and algorithms. A computational study is conducted to evaluate the performance of JGraphT versus a number of similar libraries. Experiments on a large number of graphs over a variety of popular algorithms show that JGraphT is highly competitive with other established libraries such as NetworkX or the BGL.Comment: Major Revisio

    An Interactive Relaxation Approach for Anomaly Detection and Preventive Measures in Computer Networks

    Get PDF
    It is proposed to develop a framework of detecting and analyzing small and widespread changes in specific dynamic characteristics of several nodes. The characteristics are locally measured at each node in a large network of computers and analyzed using a computational paradigm known as the Relaxation technique. The goal is to be able to detect the onset of a worm or virus as it originates, spreads-out, attacks and disables the entire network. Currently, selective disabling of one or more features across an entire subnet, e.g. firewalls, provides limited security and keeps us from designing high performance net-centric systems. The most desirable response is to surgically disable one or more nodes, or to isolate one or more subnets.The proposed research seeks to model virus/worm propagation as a spatio-temporal process. Such models have been successfully applied in heat-flow and evidence or gestalt driven perception of images among others. In particular, we develop an iterative technique driven by the self-assessed dynamic status of each node in a network. The status of each node will be updated incrementally in concurrence with its connected neighbors to enable timely identification of compromised nodes and subnets. Several key insights used in image analysis of line-diagrams, through an iterative and relaxation-driven node labeling method, are explored to help develop this new framework

    Computer representation of graphical information with applications

    Get PDF
    PhD ThesisThe research work contained in this thesls lies mainly in the field of computer graphics. The initial chapters are concerned with methods of representing three dimensional solids in two dimensions. Chapter 2 describes a method by which points in three dimensions can be projected onto a two dimensional plane of This is an essential requirement in the projection. This is an essential requirement in the representation of three dimensional solids. Chapter 3 describes a method by which convex polyhedra can be represented by computer. Both the hidden polyhedra and visible face of the polyhedron can be represented by computer. Having tackled this problem, the more difficult problem of representing the non convex polyhedron has been attempted and the results of this work are presented in Chapter 4. Line drawings of the various polyhedra, produced on a graph plotter, are given as examples at the end of Chapters 2, 3 and 4. The problem of how to connect a given line drawing such that the distance travelled by the pen of some computer display is kept to a minimum is discussed in Chapter 5 and various definitions of the concepts involved are given. Theory associated with this 'Pen-Up Problem' has been developed and is explained in detail in the early part of Chapter 6. A method of obtaining an optimal solution to the problem is presented in the latter part of this chapter in addition to various enumerative schemes which have been developed to obtain good feasible solutions to the pen up problems under various conditions Extensive C.P.U. timing experiments have been carried out in Chapter 7 on the various enumerative schemes in Chapter 6 and it has introduced been possible to reach conclusions on the applicability of the various methods. Several topics of interest which have arisen during the main research work are presented as appendices. The programs which have been coded during the period of research are also inc1udeu as appendices

    Constraint-based Programming: A Survey

    Get PDF
    Report on constraint-based computer programming analyzing finite-domain and continuous-domain constraint satisfaction methods and existing systems which apply constraints to problem-solving, modeling, and simulation

    3D Robotic Sensing of People: Human Perception, Representation and Activity Recognition

    Get PDF
    The robots are coming. Their presence will eventually bridge the digital-physical divide and dramatically impact human life by taking over tasks where our current society has shortcomings (e.g., search and rescue, elderly care, and child education). Human-centered robotics (HCR) is a vision to address how robots can coexist with humans and help people live safer, simpler and more independent lives. As humans, we have a remarkable ability to perceive the world around us, perceive people, and interpret their behaviors. Endowing robots with these critical capabilities in highly dynamic human social environments is a significant but very challenging problem in practical human-centered robotics applications. This research focuses on robotic sensing of people, that is, how robots can perceive and represent humans and understand their behaviors, primarily through 3D robotic vision. In this dissertation, I begin with a broad perspective on human-centered robotics by discussing its real-world applications and significant challenges. Then, I will introduce a real-time perception system, based on the concept of Depth of Interest, to detect and track multiple individuals using a color-depth camera that is installed on moving robotic platforms. In addition, I will discuss human representation approaches, based on local spatio-temporal features, including new “CoDe4D” features that incorporate both color and depth information, a new “SOD” descriptor to efficiently quantize 3D visual features, and the novel AdHuC features, which are capable of representing the activities of multiple individuals. Several new algorithms to recognize human activities are also discussed, including the RG-PLSA model, which allows us to discover activity patterns without supervision, the MC-HCRF model, which can explicitly investigate certainty in latent temporal patterns, and the FuzzySR model, which is used to segment continuous data into events and probabilistically recognize human activities. Cognition models based on recognition results are also implemented for decision making that allow robotic systems to react to human activities. Finally, I will conclude with a discussion of future directions that will accelerate the upcoming technological revolution of human-centered robotics

    3D Reconstruction using Active Illumination

    Get PDF
    In this thesis we present a pipeline for 3D model acquisition. Generating 3D models of real-world objects is an important task in computer vision with many applications, such as in 3D design, archaeology, entertainment, and virtual or augmented reality. The contribution of this thesis is threefold: we propose a calibration procedure for the cameras, we describe an approach for capturing and processing photometric normals using gradient illuminations in the hardware set-up, and finally we present a multi-view photometric stereo 3D reconstruction method. In order to obtain accurate results using multi-view and photometric stereo reconstruction, the cameras are calibrated geometrically and photometrically. For acquiring data, a light stage is used. This is a hardware set-up that allows to control the illumination during acquisition. The procedure used to generate appropriate illuminations and to process the acquired data to obtain accurate photometric normals is described. The core of the pipeline is a multi-view photometric stereo reconstruction method. In this method, we first generate a sparse reconstruction using the acquired images and computed normals. In the second step, the information from the normal maps is used to obtain a dense reconstruction of an object’s surface. Finally, the reconstructed surface is filtered to remove artifacts introduced by the dense reconstruction step

    構造化データに対する予測手法:グラフ,順序,時系列

    Get PDF
    京都大学新制・課程博士博士(情報学)甲第23439号情博第769号新制||情||131(附属図書館)京都大学大学院情報学研究科知能情報学専攻(主査)教授 鹿島 久嗣, 教授 山本 章博, 教授 阿久津 達也学位規則第4条第1項該当Doctor of InformaticsKyoto UniversityDFA
    corecore