292 research outputs found

    The INTERNODES method for the treatment of non-conforming multipatch geometries in Isogeometric Analysis

    Full text link
    In this paper we apply the INTERNODES method to solve second order elliptic problems discretized by Isogeometric Analysis methods on non-conforming multiple patches in 2D and 3D geometries. INTERNODES is an interpolation-based method that, on each interface of the configuration, exploits two independent interpolation operators to enforce the continuity of the traces and of the normal derivatives. INTERNODES supports non-conformity on NURBS spaces as well as on geometries. We specify how to set up the interpolation matrices on non-conforming interfaces, how to enforce the continuity of the normal derivatives and we give special attention to implementation aspects. The numerical results show that INTERNODES exhibits optimal convergence rate with respect to the mesh size of the NURBS spaces an that it is robust with respect to jumping coefficients.Comment: Accepted for publication in Computer Methods in Applied Mechanics and Engineerin

    CAD-integrierte Isogeometrische Analyse und Entwurf leichter Tragwerke

    Get PDF
    Isogeometric methods are extended for the parametric design process of complex lightweight structures. Three novel methods for the coupling of different structural elements are proposed: rotational coupling, implicit geometry description, and frictionless sliding contact. Moreover, the necessary steps for the integration of the numerical analysis, including pre- and post-processing, in CAD are investigated. It is possible to base several different analyses on each other in order to parametrically represent a construction process with multiple steps.Die isogeometrischen Methoden werden zur Anwendung im parametrischen Entwurfsprozess von komplexen Leichtbaustrukturen erweitert. Hierzu werden drei neue Methoden zur Kopplung unterschiedlicher Strukturelemente vorgeschlagen: Rotationskopplung, implizite Geometriebeschreibung und reibungsfreier Gleitkontakt. Ferner werden die nötigen Schritte zur Einbindung von Pre- und Postprocessing für numerische Simulationen in CAD untersucht. Mehrere unterschiedliche Analysen können auf einander folgen und werden verlinkt, um den Aufbauprozess in mehreren Schritten vollparametrisch abzubilden

    Realization of CAD-integrated shell simulation based on isogeometric B-Rep analysis

    Get PDF
    An entire design-through-analysis workflow solution for isogeometric B-Rep analysis (IBRA), including both the interface to existing CADs and the analysis procedure, is presented. Possible approaches are elaborated for the full scope of structural analysis solvers ranging from low to high isogeometric simulation fidelity. This is based on a systematic investigation of solver designs suitable for IBRA. A theoretically ideal IBRA solver has all CAD capabilities and information accessible at any point, however, realistic scenarios typically do not allow this level of information. Even a classical FE solver can be included in the CAD-integrated workflow, which is achieved by a newly proposed meshless approach. This simple solution eases the implementation of the solver backend. The interface to the CAD is modularized by defining a database, which provides IO capabilities on the base of a standardized data exchange format. Such database is designed to store not only geometrical quantities but also all the numerical information needed to realize the computations. This feature allows its use also in codes which do not provide full isogeometric geometrical handling capabilities. The rough geometry information for computation is enhanced with the boundary topology information which implies trimming and coupling of NURBS-based entities. This direct use of multi-patch trimmed CAD geometries follows the principle of embedding objects into a background parametrization. Consequently, redefinition and meshing of geometry is avoided. Several examples from illustrative cases to industrial problems are provided to demonstrate the application of the proposed approach and to explain in detail the proposed exchange formats.Peer ReviewedPostprint (published version

    A comparison of smooth basis constructions for isogeometric analysis

    Full text link
    In order to perform isogeometric analysis with increased smoothness on complex domains, trimming, variational coupling or unstructured spline methods can be used. The latter two classes of methods require a multi-patch segmentation of the domain, and provide continuous bases along patch interfaces. In the context of shell modeling, variational methods are widely used, whereas the application of unstructured spline methods on shell problems is rather scarce. In this paper, we therefore provide a qualitative and a quantitative comparison of a selection of unstructured spline constructions, in particular the D-Patch, Almost-C1C^1, Analysis-Suitable G1G^1 and the Approximate C1C^1 constructions. Using this comparison, we aim to provide insight into the selection of methods for practical problems, as well as directions for future research. In the qualitative comparison, the properties of each method are evaluated and compared. In the quantitative comparison, a selection of numerical examples is used to highlight different advantages and disadvantages of each method. In the latter, comparison with weak coupling methods such as Nitsche's method or penalty methods is made as well. In brief, it is concluded that the Approximate C1C^1 and Analysis-Suitable G1G^1 converge optimally in the analysis of a bi-harmonic problem, without the need of special refinement procedures. Furthermore, these methods provide accurate stress fields. On the other hand, the Almost-C1C^1 and D-Patch provide relatively easy construction on complex geometries. The Almost-C1C^1 method does not have limitations on the valence of boundary vertices, unlike the D-Patch, but is only applicable to biquadratic local bases. Following from these conclusions, future research directions are proposed, for example towards making the Approximate C1C^1 and Analysis-Suitable G1G^1 applicable to more complex geometries

    Solid NURBS Conforming Scaffolding for Isogeometric Analysis

    Get PDF
    This work introduces a scaffolding framework to compactly parametrise solid structures with conforming NURBS elements for isogeometric analysis. A novel formulation introduces a topological, geometrical and parametric subdivision of the space in a minimal plurality of conforming vectorial elements. These determine a multi-compartmental scaffolding for arbitrary branching patterns. A solid smoothing paradigm is devised for the conforming scaffolding achieving higher than positional geometrical and parametric continuity. Results are shown for synthetic shapes of varying complexity, for modular CAD geometries, for branching structures from tessellated meshes and for organic biological structures from imaging data. Representative simulations demonstrate the validity of the introduced scaffolding framework with scalable performance and groundbreaking applications for isogeometric analysis

    08221 Abstracts Collection -- Geometric Modeling

    Get PDF
    From May 26 to May 30 2008 the Dagstuhl Seminar 08221 ``Geometric Modeling\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Inferring Geodesic Cerebrovascular Graphs: Image Processing, Topological Alignment and Biomarkers Extraction

    Get PDF
    A vectorial representation of the vascular network that embodies quantitative features - location, direction, scale, and bifurcations - has many potential neuro-vascular applications. Patient-specific models support computer-assisted surgical procedures in neurovascular interventions, while analyses on multiple subjects are essential for group-level studies on which clinical prediction and therapeutic inference ultimately depend. This first motivated the development of a variety of methods to segment the cerebrovascular system. Nonetheless, a number of limitations, ranging from data-driven inhomogeneities, the anatomical intra- and inter-subject variability, the lack of exhaustive ground-truth, the need for operator-dependent processing pipelines, and the highly non-linear vascular domain, still make the automatic inference of the cerebrovascular topology an open problem. In this thesis, brain vessels’ topology is inferred by focusing on their connectedness. With a novel framework, the brain vasculature is recovered from 3D angiographies by solving a connectivity-optimised anisotropic level-set over a voxel-wise tensor field representing the orientation of the underlying vasculature. Assuming vessels joining by minimal paths, a connectivity paradigm is formulated to automatically determine the vascular topology as an over-connected geodesic graph. Ultimately, deep-brain vascular structures are extracted with geodesic minimum spanning trees. The inferred topologies are then aligned with similar ones for labelling and propagating information over a non-linear vectorial domain, where the branching pattern of a set of vessels transcends a subject-specific quantized grid. Using a multi-source embedding of a vascular graph, the pairwise registration of topologies is performed with the state-of-the-art graph matching techniques employed in computer vision. Functional biomarkers are determined over the neurovascular graphs with two complementary approaches. Efficient approximations of blood flow and pressure drop account for autoregulation and compensation mechanisms in the whole network in presence of perturbations, using lumped-parameters analog-equivalents from clinical angiographies. Also, a localised NURBS-based parametrisation of bifurcations is introduced to model fluid-solid interactions by means of hemodynamic simulations using an isogeometric analysis framework, where both geometry and solution profile at the interface share the same homogeneous domain. Experimental results on synthetic and clinical angiographies validated the proposed formulations. Perspectives and future works are discussed for the group-wise alignment of cerebrovascular topologies over a population, towards defining cerebrovascular atlases, and for further topological optimisation strategies and risk prediction models for therapeutic inference. Most of the algorithms presented in this work are available as part of the open-source package VTrails
    • …
    corecore