15 research outputs found

    Edge-disjoint spanners in Cartesian products of graphs

    Get PDF
    AbstractA spanning subgraph S=(V,E′) of a connected graph G=(V,E) is an (x+c)-spanner if for any pair of vertices u and v, dS(u,v)⩽dG(u,v)+c where dG and dS are the usual distance functions in G and S, respectively. The parameter c is called the delay of the spanner. We study edge-disjoint spanners in graphs, focusing on graphs formed as Cartesian products. Our approach is to construct sets of edge-disjoint spanners in a product based on sets of edge-disjoint spanners and colorings of the component graphs. We present several results on general products and then narrow our focus to hypercubes

    A New Optimality Measure for Distance Dominating Sets

    Get PDF
      We study the problem of finding the smallest power of an input graph that has k disjoint dominating sets, where the ith power of an input graph G is constructed by adding edges between pairs of vertices in G at distance i or less, and a subset of vertices in a graph G is a dominating set if and only if every vertex in G is adjacent to a vertex in this subset.   The problem is a different view of the d-domatic number problem in which the goal is to find the maximum number of disjoint dominating sets in the dth power of the input graph.   This problem is motivated by applications in multi-facility location and distributed networks. In the facility location framework, for instance, there are k types of services that all clients in different regions of a city should receive. A graph representing the map of regions in the city is given where the nodes of the graph represent regions and neighboring regions are connected by edges. The problem is how to establish facility servers in the city (each region can host at most one server) such that every client in the city can access a facility server in its region or in a region in the neighborhood. Since it may not be possible to find a facility location satisfying this condition, "a region in the neighborhood" required in the question is modified to "a region at the minimum possible distance d".   In this thesis, we study the connection of the above-mentioned problem with similar problems including the domatic number problem and the d-domatic number problem. We show that the problem is NP-complete for any fixed k greater than two even when the input graph is restricted to split graphs, 2-connected graphs, or planar bipartite graphs of degree four. In addition, the problem is in P for bounded tree-width graphs, when considering k as a constant, and for strongly chordal graphs, for any k. Then, we provide a slightly simpler proof for a known upper bound for the problem. We also develop an exact (exponential) algorithm for the problem, running in time O(2. 73n). Moreover, we prove that the problem cannot be approximated within ratio smaller than 2 even for split graphs, 2-connected graphs, and planar bipartite graphs of degree four. We propose a greedy 3-approximation algorithm for the problem in the general case, and other approximation ratios for permutation graphs, distance-hereditary graphs, cocomparability graphs, dually chordal graphs, and chordal graphs. Finally, we list some directions for future work

    Optimisation problems in wireless sensor networks : Local algorithms and local graphs

    Get PDF
    This thesis studies optimisation problems related to modern large-scale distributed systems, such as wireless sensor networks and wireless ad-hoc networks. The concrete tasks that we use as motivating examples are the following: (i) maximising the lifetime of a battery-powered wireless sensor network, (ii) maximising the capacity of a wireless communication network, and (iii) minimising the number of sensors in a surveillance application. A sensor node consumes energy both when it is transmitting or forwarding data, and when it is performing measurements. Hence task (i), lifetime maximisation, can be approached from two different perspectives. First, we can seek for optimal data flows that make the most out of the energy resources available in the network; such optimisation problems are examples of so-called max-min linear programs. Second, we can conserve energy by putting redundant sensors into sleep mode; we arrive at the sleep scheduling problem, in which the objective is to find an optimal schedule that determines when each sensor node is asleep and when it is awake. In a wireless network simultaneous radio transmissions may interfere with each other. Task (ii), capacity maximisation, therefore gives rise to another scheduling problem, the activity scheduling problem, in which the objective is to find a minimum-length conflict-free schedule that satisfies the data transmission requirements of all wireless communication links. Task (iii), minimising the number of sensors, is related to the classical graph problem of finding a minimum dominating set. However, if we are not only interested in detecting an intruder but also locating the intruder, it is not sufficient to solve the dominating set problem; formulations such as minimum-size identifying codes and locating–dominating codes are more appropriate. This thesis presents approximation algorithms for each of these optimisation problems, i.e., for max-min linear programs, sleep scheduling, activity scheduling, identifying codes, and locating–dominating codes. Two complementary approaches are taken. The main focus is on local algorithms, which are constant-time distributed algorithms. The contributions include local approximation algorithms for max-min linear programs, sleep scheduling, and activity scheduling. In the case of max-min linear programs, tight upper and lower bounds are proved for the best possible approximation ratio that can be achieved by any local algorithm. The second approach is the study of centralised polynomial-time algorithms in local graphs – these are geometric graphs whose structure exhibits spatial locality. Among other contributions, it is shown that while identifying codes and locating–dominating codes are hard to approximate in general graphs, they admit a polynomial-time approximation scheme in local graphs

    Survey of local algorithms

    Get PDF
    A local algorithm is a distributed algorithm that runs in constant time, independently of the size of the network. Being highly scalable and fault-tolerant, such algorithms are ideal in the operation of large-scale distributed systems. Furthermore, even though the model of local algorithms is very limited, in recent years we have seen many positive results for non-trivial problems. This work surveys the state-of-the-art in the field, covering impossibility results, deterministic local algorithms, randomised local algorithms, and local algorithms for geometric graphs.Peer reviewe

    Allocation Algorithms for Networks with Scarce Resources

    Get PDF
    Many fundamental algorithmic techniques have roots in applications to computer networks. We consider several problems that crop up in wireless ad hoc networks, sensor networks, P2P networks, and cluster networks. The common challenge here is to deal with certain bottleneck resources that are crucial for performance of the underlying system. Broadly, we deal with the following issues. Data: The primary goal in resource replication problems is to replicate data objects on server nodes with limited storage capacities, so that the latency of client nodes needing these objects is minimized. Previous work in this area is heuristic and without guarantees. We develop tight (or nearly) approximation algorithms for several problems including basic resource replication - where clients need all objects and server can store at most one object, subset resource replication - where clients require different subsets of objects and servers have limited non-uniform capacity, and related variants. Computational resources: To facilitate packing of jobs needing disparate amounts of computational resources in cluster networks, an important auxiliary problem to solve is that of container selection. The idea is to select a limited number of ``containers'' that represent a given pool of jobs while minimizing ``wastage'' of resources. Subsequently, containers representing jobs can be packed instead of jobs themselves. We study this problem in two settings: continuous - where there are no additional restrictions on chosen containers, and discrete - where we must choose containers from a given set. We show that the continuous variant is NP-hard and admits a polynomial time approximation scheme. Contrastingly, the discrete variant is shown to be NP-hard to approximate. Therefore, we seek bi-approximation algorithms for this case. Energy resources: Wireless ad hoc networks contain nodes with limited battery life and it is crucial to design energy efficient algorithms. We obtain tight approximation (up to constant factors) guarantees for partial and budgeted versions of the connected dominating set problem, which is regarded as a good model for a virtual backbone of a wireless ad hoc network. Further, we will discuss approximation algorithms for some problems involving target monitoring in sensor networks and message propagation in radio networks. We will end with a discussion on future work

    Distributed Connectivity Decomposition

    Full text link
    We present time-efficient distributed algorithms for decomposing graphs with large edge or vertex connectivity into multiple spanning or dominating trees, respectively. As their primary applications, these decompositions allow us to achieve information flow with size close to the connectivity by parallelizing it along the trees. More specifically, our distributed decomposition algorithms are as follows: (I) A decomposition of each undirected graph with vertex-connectivity kk into (fractionally) vertex-disjoint weighted dominating trees with total weight Ω(klogn)\Omega(\frac{k}{\log n}), in O~(D+n)\widetilde{O}(D+\sqrt{n}) rounds. (II) A decomposition of each undirected graph with edge-connectivity λ\lambda into (fractionally) edge-disjoint weighted spanning trees with total weight λ12(1ε)\lceil\frac{\lambda-1}{2}\rceil(1-\varepsilon), in O~(D+nλ)\widetilde{O}(D+\sqrt{n\lambda}) rounds. We also show round complexity lower bounds of Ω~(D+nk)\tilde{\Omega}(D+\sqrt{\frac{n}{k}}) and Ω~(D+nλ)\tilde{\Omega}(D+\sqrt{\frac{n}{\lambda}}) for the above two decompositions, using techniques of [Das Sarma et al., STOC'11]. Moreover, our vertex-connectivity decomposition extends to centralized algorithms and improves the time complexity of [Censor-Hillel et al., SODA'14] from O(n3)O(n^3) to near-optimal O~(m)\tilde{O}(m). As corollaries, we also get distributed oblivious routing broadcast with O(1)O(1)-competitive edge-congestion and O(logn)O(\log n)-competitive vertex-congestion. Furthermore, the vertex connectivity decomposition leads to near-time-optimal O(logn)O(\log n)-approximation of vertex connectivity: centralized O~(m)\widetilde{O}(m) and distributed O~(D+n)\tilde{O}(D+\sqrt{n}). The former moves toward the 1974 conjecture of Aho, Hopcroft, and Ullman postulating an O(m)O(m) centralized exact algorithm while the latter is the first distributed vertex connectivity approximation

    Preprocessing Subgraph and Minor Problems: When Does a Small Vertex Cover Help?

    Full text link
    We prove a number of results around kernelization of problems parameterized by the size of a given vertex cover of the input graph. We provide three sets of simple general conditions characterizing problems admitting kernels of polynomial size. Our characterizations not only give generic explanations for the existence of many known polynomial kernels for problems like q-Coloring, Odd Cycle Transversal, Chordal Deletion, Eta Transversal, or Long Path, parameterized by the size of a vertex cover, but also imply new polynomial kernels for problems like F-Minor-Free Deletion, which is to delete at most k vertices to obtain a graph with no minor from a fixed finite set F. While our characterization captures many interesting problems, the kernelization complexity landscape of parameterizations by vertex cover is much more involved. We demonstrate this by several results about induced subgraph and minor containment testing, which we find surprising. While it was known that testing for an induced complete subgraph has no polynomial kernel unless NP is in coNP/poly, we show that the problem of testing if a graph contains a complete graph on t vertices as a minor admits a polynomial kernel. On the other hand, it was known that testing for a path on t vertices as a minor admits a polynomial kernel, but we show that testing for containment of an induced path on t vertices is unlikely to admit a polynomial kernel.Comment: To appear in the Journal of Computer and System Science

    Separate, measure and conquer: faster polynomial-space algorithms for Max 2-CSP and counting dominating sets

    Get PDF
    We show a method resulting in the improvement of several polynomial-space, exponential-time algorithms. The method capitalizes on the existence of small balanced separators for sparse graphs, which can be exploited for branching to disconnect an instance into independent components. For this algorithm design paradigm, the challenge to date has been to obtain improvements in worst-case analyses of algorithms, compared with algorithms that are analyzed with advanced methods, notably Measure and Conquer. Our contribution is the design of a general method to integrate the advantage from the separator-branching into Measure and Conquer, for a more precise and improved running time analysi

    Algorithms for Efficient Communication in Wireless Sensor Networks - Distributed Node Coloring and its Application in the SINR Model

    Get PDF
    In this thesis we consider algorithms that enable efficient communication in wireless ad-hoc- and sensornetworks using the so-called Signal-to-interference-and-noise-ratio (SINR) model of interference. We propose and experimentally evaluate several distributed node coloring algorithms and show how to use a computed node coloring to establish efficient medium access schedules
    corecore