4,577 research outputs found

    Revisiting QRS detection methodologies for portable, wearable, battery-operated, and wireless ECG systems

    Get PDF
    Cardiovascular diseases are the number one cause of death worldwide. Currently, portable battery-operated systems such as mobile phones with wireless ECG sensors have the potential to be used in continuous cardiac function assessment that can be easily integrated into daily life. These portable point-of-care diagnostic systems can therefore help unveil and treat cardiovascular diseases. The basis for ECG analysis is a robust detection of the prominent QRS complex, as well as other ECG signal characteristics. However, it is not clear from the literature which ECG analysis algorithms are suited for an implementation on a mobile device. We investigate current QRS detection algorithms based on three assessment criteria: 1) robustness to noise, 2) parameter choice, and 3) numerical efficiency, in order to target a universal fast-robust detector. Furthermore, existing QRS detection algorithms may provide an acceptable solution only on small segments of ECG signals, within a certain amplitude range, or amid particular types of arrhythmia and/or noise. These issues are discussed in the context of a comparison with the most conventional algorithms, followed by future recommendations for developing reliable QRS detection schemes suitable for implementation on battery-operated mobile devices.Mohamed Elgendi, Björn Eskofier, Socrates Dokos, Derek Abbot

    Enhanced adaptive matched filter for automated identification and measurement of electrocardiographic alternans

    Get PDF
    none5siElectrocardiographic alternans, consisting of P-wave alternans (PWA), QRS-complex alternans (QRSA) and T-wave alternans (TWA), is an index of cardiac risk. However, only automated TWA measurement methods have been proposed so far. Here, we presented the enhanced adaptive matched filter (EAMF) method and tested its reliability in both simulated and experimental conditions. Our methodological novelty consists in the introduction of a signal enhancement procedure according to which all sections of the electrocardiogram (ECG) but the wave of interest are set to baseline, and in the extraction of the alternans area (AAr) in addition to the standard alternans amplitude (AAm). Simulated data consisted of 27 simulated ECGs representing all combinations of PWA, QRSA and TWA of low (10 μV) and high (100 μV) amplitude. Experimental data consisted of exercise 12-lead ECGs from 266 heart failure patients with an implanted cardioverter defibrillator for primary prevention. EAMF was able to accurately identify and measure all kinds of simulated alternans (absolute maximum error equal to 2%). Moreover, different alternans kinds were simultaneously present in the experimental data and EAMF was able to identify and measure all of them (AAr: 545 μV × ms, 762 μV × ms and 1382 μV × ms; AAm: 5 μV, 9 μV and 7 μV; for PWA, QRSA and TWA, respectively) and to discriminate TWA as the prevalent one (with the highest AAr). EAMF accurately identifies and measures all kinds of electrocardiographic alternans. EAMF may support determination of incremental clinical utility of PWA and QRSA with respect to TWA only.openMarcantoni I.; Sbrollini A.; Morettini M.; Swenne C.A.; Burattini L.Marcantoni, I.; Sbrollini, A.; Morettini, M.; Swenne, C. A.; Burattini, L

    Development of method of matched morphological filtering of biomedical signals and images

    Get PDF
    Formalized approach to the analysis of biomedical signals and images with locally concentrated features is developed on the basis of matched morphological filtering taking into account the useful signal models that allowed generalizing the existing methods of digital processing and analysis of biomedical signals and images with locally concentrated features. The proposed matched morphological filter has been adapted to solve such problems as localization of the searched structural elements on biomedical signals with locally concentrated features, estimation of the irregular background aimed at the visualization quality improving of biological objects on X-ray biomedical images, pathologic structures selection on mammogram. The efficiency of the proposed methods of matched morphological filtration of biomedical signals and images with locally concentrated features is proved by experiments

    Real Time QRS Detection Based on M-ary Likelihood Ratio Test on the DFT Coefficients

    Get PDF
    This paper shows an adaptive statistical test for QRS detection of electrocardiography (ECG) signals. The method is based on a M-ary generalized likelihood ratio test (LRT) defined over a multiple observation window in the Fourier domain. The motivations for proposing another detection algorithm based on maximum a posteriori (MAP) estimation are found in the high complexity of the signal model proposed in previous approaches which i) makes them computationally unfeasible or not intended for real time applications such as intensive care monitoring and (ii) in which the parameter selection conditions the overall performance. In this sense, we propose an alternative model based on the independent Gaussian properties of the Discrete Fourier Transform (DFT) coefficients, which allows to define a simplified MAP probability function. In addition, the proposed approach defines an adaptive MAP statistical test in which a global hypothesis is defined on particular hypotheses of the multiple observation window. In this sense, the observation interval is modeled as a discontinuous transmission discrete-time stochastic process avoiding the inclusion of parameters that constraint the morphology of the QRS complexes.This work has received research funding from the Spanish government (www.micinn.es) under project TEC2012 34306 (DiagnoSIS, Diagnosis by means of Statistical Intelligent Systems, 70K€) and projects P09-TIC-4530 (300K€) and P11-TIC-7103 (156K€) from the Andalusian government (http://www.juntadeandalucia.es/organismo​s/economiainnovacioncienciayempleo.html)

    Intelligent Pattern Analysis of the Foetal Electrocardiogram

    Get PDF
    The aim of the project on which this thesis is based is to develop reliable techniques for foetal electrocardiogram (ECG) based monitoring, to reduce incidents of unnecessary medical intervention and foetal injury during labour. World-wide electronic foetal monitoring is based almost entirely on the cardiotocogram (CTG), which is a continuous display of the foetal heart rate (FHR) pattern together with the contraction of the womb. Despite the widespread use of the CTG, there is no significant improvement in foetal outcome. In the UK alone it is estimated that birth related negligence claims cost the health authorities over £400M per-annum. An expert system, known as INFANT, has recently been developed to assist CTG interpretation. However, the CTG alone does not always provide all the information required to improve the outcome of labour. The widespread use of ECG analysis has been hindered by the difficulties with poor signal quality and the difficulties in applying the specialised knowledge required for interpreting ECG patterns, in association with other events in labour, in an objective way. A fundamental investigation and development of optimal signal enhancement techniques that maximise the available information in the ECG signal, along with different techniques for detecting individual waveforms from poor quality signals, has been carried out. To automate the visual interpretation of the ECG waveform, novel techniques have been developed that allow reliable extraction of key features and hence allow a detailed ECG waveform analysis. Fuzzy logic is used to automatically classify the ECG waveform shape using these features by using knowledge that was elicited from expert sources and derived from example data. This allows the subtle changes in the ECG waveform to be automatically detected in relation to other events in labour, and thus improve the clinicians position for making an accurate diagnosis. To ensure the interpretation is based on reliable information and takes place in the proper context, a new and sensitive index for assessing the quality of the ECG has been developed. New techniques to capture, for the first time in machine form, the clinical expertise / guidelines for electronic foetal monitoring have been developed based on fuzzy logic and finite state machines, The software model provides a flexible framework to further develop and optimise rules for ECG pattern analysis. The signal enhancement, QRS detection and pattern recognition of important ECG waveform shapes have had extensive testing and results are presented. Results show that no significant loss of information is incurred as a result of the signal enhancement and feature extraction techniques

    Extracting fetal heart beats from maternal abdominal recordings: Selection of the optimal principal components

    Get PDF
    This study presents a systematic comparison of different approaches to the automated selection of the principal components (PC) which optimise the detection of maternal and fetal heart beats from non-invasive maternal abdominal recordings. A public database of 75 4-channel non-invasive maternal abdominal recordings was used for training the algorithm. Four methods were developed and assessed to determine the optimal PC: (1) power spectral distribution, (2) root mean square, (3) sample entropy, and (4) QRS template. The sensitivity of the performance of the algorithm to large-amplitude noise removal (by wavelet de-noising) and maternal beat cancellation methods were also assessed. The accuracy of maternal and fetal beat detection was assessed against reference annotations and quantified using the detection accuracy score F1 [2*PPV*Se / (PPV + Se)], sensitivity (Se), and positive predictive value (PPV). The best performing implementation was assessed on a test dataset of 100 recordings and the agreement between the computed and the reference fetal heart rate (fHR) and fetal RR (fRR) time series quantified. The best performance for detecting maternal beats (F1 99.3%, Se 99.0%, PPV 99.7%) was obtained when using the QRS template method to select the optimal maternal PC and applying wavelet de-noising. The best performance for detecting fetal beats (F1 89.8%, Se 89.3%, PPV 90.5%) was obtained when the optimal fetal PC was selected using the sample entropy method and utilising a fixed-length time window for the cancellation of the maternal beats. The performance on the test dataset was 142.7 beats2/min2 for fHR and 19.9 ms for fRR, ranking respectively 14 and 17 (out of 29) when compared to the other algorithms presented at the Physionet Challenge 2013

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table
    corecore