1,184 research outputs found

    Fine-sorting One-dimensional Particle-In-Cell Algorithm with Monte-Carlo Collisions on a Graphics Processing Unit

    Full text link
    Particle-in-cell (PIC) simulations with Monte-Carlo collisions are used in plasma science to explore a variety of kinetic effects. One major problem is the long run-time of such simulations. Even on modern computer systems, PIC codes take a considerable amount of time for convergence. Most of the computations can be massively parallelized, since particles behave independently of each other within one time step. Current graphics processing units (GPUs) offer an attractive means for execution of the parallelized code. In this contribution we show a one-dimensional PIC code running on Nvidia GPUs using the CUDA environment. A distinctive feature of the code is that size of the cells that the code uses to sort the particles with respect to their coordinates is comparable to size of the grid cells used for discretization of the electric field. Hence, we call the corresponding algorithm "fine-sorting". Implementation details and optimization of the code are discussed and the speed-up compared to classical CPU approaches is computed

    An Efficient Cell List Implementation for Monte Carlo Simulation on GPUs

    Full text link
    Maximizing the performance potential of the modern day GPU architecture requires judicious utilization of available parallel resources. Although dramatic reductions can often be obtained through straightforward mappings, further performance improvements often require algorithmic redesigns to more closely exploit the target architecture. In this paper, we focus on efficient molecular simulations for the GPU and propose a novel cell list algorithm that better utilizes its parallel resources. Our goal is an efficient GPU implementation of large-scale Monte Carlo simulations for the grand canonical ensemble. This is a particularly challenging application because there is inherently less computation and parallelism than in similar applications with molecular dynamics. Consistent with the results of prior researchers, our simulation results show traditional cell list implementations for Monte Carlo simulations of molecular systems offer effectively no performance improvement for small systems [5, 14], even when porting to the GPU. However for larger systems, the cell list implementation offers significant gains in performance. Furthermore, our novel cell list approach results in better performance for all problem sizes when compared with other GPU implementations with or without cell lists.Comment: 30 page

    Comparison of Different Parallel Implementations of the 2+1-Dimensional KPZ Model and the 3-Dimensional KMC Model

    Full text link
    We show that efficient simulations of the Kardar-Parisi-Zhang interface growth in 2 + 1 dimensions and of the 3-dimensional Kinetic Monte Carlo of thermally activated diffusion can be realized both on GPUs and modern CPUs. In this article we present results of different implementations on GPUs using CUDA and OpenCL and also on CPUs using OpenCL and MPI. We investigate the runtime and scaling behavior on different architectures to find optimal solutions for solving current simulation problems in the field of statistical physics and materials science.Comment: 14 pages, 8 figures, to be published in a forthcoming EPJST special issue on "Computer simulations on GPU
    • …
    corecore