1,146 research outputs found

    INDEMICS: An Interactive High-Performance Computing Framework for Data Intensive Epidemic Modeling

    Get PDF
    We describe the design and prototype implementation of Indemics (_Interactive; Epi_demic; _Simulation;)ā€”a modeling environment utilizing high-performance computing technologies for supporting complex epidemic simulations. Indemics can support policy analysts and epidemiologists interested in planning and control of pandemics. Indemics goes beyond traditional epidemic simulations by providing a simple and powerful way to represent and analyze policy-based as well as individual-based adaptive interventions. Users can also stop the simulation at any point, assess the state of the simulated system, and add additional interventions. Indemics is available to end-users via a web-based interface. Detailed performance analysis shows that Indemics greatly enhances the capability and productivity of simulating complex intervention strategies with a marginal decrease in performance. We also demonstrate how Indemics was applied in some real case studies where complex interventions were implemented

    Application of Supercomputer Technologies for Simulation of Socio-Economic Systems

    Full text link
    To date, an extensive experience has been accumulated in investigation of problems related to quality, assessment of management systems, modeling of economic system sustainability. The studies performed have created a basis for formation of a new research area ā€” Economics of Quality. Its tools allow to use opportunities of model simulation for construction of the mathematical models adequately reflecting the role of quality in natural, technical, social regularities of functioning of the complex socioeconomic systems. Extensive application and development of models, and also system modeling with use of supercomputer technologies, on our deep belief, will bring the conducted researches of social and economic systems to essentially new level. Moreover, the current scientific research makes a significant contribution to model simulation of multi-agent social systems and that isnā€™t less important, it belongs to the priority areas in development of science and technology in our country. This article is devoted to the questions of supercomputer technologies application in public sciences, first of all, ā€” regarding technical realization of the large-scale agent-focused models (AFM). The essence of this tool is that owing to increase in power of computers it became possible to describe the behavior of many separate fragments of a difficult system, as social and economic systems represent. The article also deals with the experience of foreign scientists and practicians in launching the AFM on supercomputers, and also the example of AFM developed in CEMI RAS, stages and methods of effective calculating kernel display of multi-agent system on architecture of a modern supercomputer will be analyzed. The experiments on the basis of model simulation on forecasting the population of St. Petersburg according to three scenarios as one of the major factors influencing the development of social and economic system and quality of life of the population are presented in the conclusion

    Formal analysis techniques for gossiping protocols

    Get PDF
    We give a survey of formal verification techniques that can be used to corroborate existing experimental results for gossiping protocols in a rigorous manner. We present properties of interest for gossiping protocols and discuss how various formal evaluation techniques can be employed to predict them

    Model refinement through high-performance computing: an agent-based HIV example

    Get PDF
    Background Recent advances in Immunology highlighted the importance of local properties on the overall progression of HIV infection. In particular, the gastrointestinal tract is seen as a key area during early infection, and the massive cell depletion associated with it may influence subsequent disease progression. This motivated the development of a large-scale agent-based model. Results Lymph nodes are explicitly implemented, and considerations on parallel computing permit large simulations and the inclusion of local features. The results obtained show that GI tract inclusion in the model leads to an accelerated disease progression, during both the early stages and the long-term evolution, compared to a theoretical, uniform model. Conclusions These results confirm the potential of treatment policies currently under investigation, which focus on this region. They also highlight the potential of this modelling framework, incorporating both agent-based and network-based components, in the context of complex systems where scaling-up alone does not result in models providing additional insights

    Agent-based modeling for environmental management. Case study: virus dynamics affecting Norwegian fish farming in fjords

    Get PDF
    Background: Norwegian fish-farming industry is an important industry, rapidly growing, and facing significant challenges such as the spread of pathogens1, trade-off between locations, fish production and health. There is a need for research, i.e. the development of theories (models), methods, techniques and tools for analysis, prediction and management, i.e. strategy development, policy design and decision making, to facilitate a sustainable industry. Loss due to the disease outbreaks in the aquaculture systems pose a large risk to a sustainable fish industry system, and pose a risk to the coastal and fjord ecosystem systems as a whole. Norwegian marine aquaculture systems are located in open areas (i.e. fjords) where they overlap and interact with other systems (e.g. transport, wild life, tourist, etc.). For instance, shedding viruses from aquaculture sites affect the wild fish in the whole fjord system. Fish disease spread and pathogen transmission in such complex systems, is process that it is difficult to predict, analyze, and control. There are several time-variant factors such as fish density, environmental conditions and other biological factors that affect the spread process. In this thesis, we developed methods to examine these factors on fish disease spread in fish populations and on pathogen spread in the time-space domain. Then we develop methods to control and manage the aquaculture system by finding optimal system settings in order to have a minimum infection risk and a high production capacity. Aim: The overall objective of the thesis is to develop agent-based models, methods and tools to facilitate the management of aquaculture production in Norwegian fjords by predicting the pathogen dynamics, distribution, and transmission in marine aquaculture systems. Specifically, the objectives are to assess agent-based modeling as an approach to understanding fish disease spread processes, to develop agent-based models that help us predict, analyze and understand disease dynamics in the context of various scenarios, and to develop a framework to optimize the location and the load of the aquaculture systems so as to minimize the infection risk in a growing fish industry. Methods: We use agent-based method to build models to simulate disease dynamics in fish populations and to simulate pathogen transmission between several aquaculture sites in a Norwegian fjord. Also, we use particle swarm optimization algorithm to identify agent-based modelsā€™ parameters so as to optimize the dynamics of the system model. In this context, we present a framework for using a particle swarm optimization algorithm to identify the parameter values of the agent-based model of aquaculture system that are expected to yield the optimal fish densities and farm locations that avoid the risk of spreading disease. The use of particle swarm optimization algorithm helps in identifying optimal agent-based modelsā€™ input parameters depending on the feedback from the agentbased modelsā€™ outputs. Results: As the thesis is built on three main studies, the results of the thesis work can be divided into three components. In the first study, we developed many agent-based models to simulate fish disease spread in stand-alone fish populations. We test the models in different scenarios by varying the agents (i.e. fish and pathogens) parameters, environment parameters (i.e. seawater temperature and currents), and interactions (interaction between agents-agents, and agents-environment) parameters. We use sensitivity analysis method to test different key input parameters such as fish density, fish swimming behavior, seawater temperature, and sea currents to show their effects on the disease spread process. Exploring the sensitivity of fish disease dynamics to these key parameters helps in combatting fish disease spread. In the second study, we build infection risk maps in a space-time domain, by developing agent-based models to identify the pathogen transmission patterns. The agent-based method helps us advance our understanding of pathogen transmission and builds risk maps to help us reduce the spread of infectious fish diseases. By using this method, we may study the spatial and dynamic aspects of the spread of infections and address the stochastic nature of the infection process. In the third study, we developed a framework for the optimization of the aquaculture systems. The framework uses particle swarm optimization algorithm to optimize agent-based modelsā€™ parameters so as to optimize the objective function. The framework was tested by developing a model to find optimal fish densities and farm locations in marine aquaculture system in a Norwegian fjord. Results show so that the rapid convergence of the presented particle swarm optimization algorithm to the optimal solution, - the algorithm requires a maximum of 18 iterations to find the best solution which can increase the fish density to three times while keeping the risk of infection at an accepted level. Conclusion: There are many contributions of this research work. First, we assessed the agent-based modeling as a method to simulate and analyze fish disease spread dynamics as a foundation for managing aquaculture systems. Results from this study demonstrate how effective the use of agentbased method is in the simulation of infectious diseases. By using this method, we are able to study spatial aspects of the spread of fish diseases and address the stochastic nature of infections process. Agent-based models are flexible, and they can include many external factors that affect fish disease dynamics such as interactions with wild fish and ship traffic. Agent-based models successfully help us to overcome the problem associated with lack of data in fish disease transmission and contribute to our understanding of different cause-effects relationships in the dynamics of fish diseases. Secondly, we developed methods to build infection risk maps in a space-time domain conditioned upon the identification of the pathogen transmission patterns in such a space-time domain, so as to help prevent and, if needed, combat infectious fish diseases by informing the management of the fish industry in Norway. Finally, we developed a method by which we may optimize the fish densities and farm locations of aquaculture systems so as to ensure a sustainable fish industry with a minimum risk of infection and a high production capacity. This PhD study offers new research-based approaches, models and tools for analysis, predictions and management that can be used to facilitate a sustainable development of the marine aquaculture industry with a maximal economic outcome and a minimal environmental impact

    SEECN: simulating complex systems using dynamic complex networks

    Get PDF

    A Framework for Modeling Human Behavior in Large-scale Agent-based Epidemic Simulations

    Get PDF
    Acknowledgements We thank Cuebiq; mobility data is provided by Cuebiq, a location intelligence and measurement platform. Through its Data for Good program, Cuebiq provides access to aggregated mobility data for academic research and humanitarian initiatives. This first-party data is collected from anonymized users who have opted-in to provide access to their location data anonymously, through a GDPR and CCPA compliant framework. To further preserve privacy, portions of the data are aggregated to the census-block group level. For the purpose of open access, the authors have applied a Creative Commons Attribution (CC BY) licence to any Author Accepted Manuscript version arising from this submission.Peer reviewedPublisher PD

    Decision Support Based on Bio-PEPA Modeling and Decision Tree Induction: A New Approach, Applied to a Tuberculosis Case Study

    Get PDF
    The problem of selecting determinant features generating appropriate model structure is a challenge in epidemiological modelling. Disease spread is highly complex, and experts develop their understanding of its dynamic over years. There is an increasing variety and volume of epidemiological data which adds to the potential confusion. We propose here to make use of that data to better understand disease systems. Decision tree techniques have been extensively used to extract pertinent information and improve decision making. In this paper, we propose an innovative structured approach combining decision tree induction with Bio-PEPA computational modelling, and illustrate the approach through application to tuberculosis. By using decision tree induction, the enhanced Bio-PEPA model shows considerable improvement over the initial model with regard to the simulated results matching observed data. The key finding is that the developer expresses a realistic predictive model using relevant features, thus considering this approach as decision support, empowers the epidemiologist in his policy decision making
    • ā€¦
    corecore