61 research outputs found

    Fast Software Polar Decoders

    Full text link
    Among error-correcting codes, polar codes are the first to provably achieve channel capacity with an explicit construction. In this work, we present software implementations of a polar decoder that leverage the capabilities of modern general-purpose processors to achieve an information throughput in excess of 200 Mbps, a throughput well suited for software-defined-radio applications. We also show that, for a similar error-correction performance, the throughput of polar decoders both surpasses that of LDPC decoders targeting general-purpose processors and is competitive with that of state-of-the-art software LDPC decoders running on graphic processing units.Comment: 5 pages, 3 figures, submitted to ICASSP 201

    GPU Accelerated Scalable Parallel Decoding of LDPC Codes

    Get PDF
    This paper proposes a flexible low-density parity-check (LDPC) decoder which leverages graphic processor units (GPU) to provide high decoding throughput. LDPC codes are widely adopted by the new emerging standards for wireless communication systems and storage applications due to their near-capacity error correcting performance. To achieve high decoding throughput on GPU, we leverage the parallelism embedded in the check-node computation and variable-node computation and propose a parallel strategy of partitioning the decoding jobs among multi-processors in GPU. In addition, we propose a scalable multi-codeword decoding scheme to fully utilize the computation resources of GPU. Furthermore, we developed a novel adaptive performance-tuning method to make our decoder implementation more flexible and scalable. The experimental results show that our LDPC decoder is scalable and flexible, and the adaptive performance-tuning method can deliver the peak performance based on the GPU architecture.Renesas MobileSamsungNational Science Foundatio

    Multi-Stream LDPC Decoder on GPU of Mobile Devices

    Get PDF
    Low-density parity check (LDPC) codes have been extensively applied in mobile communication systems due to their excellent error correcting capabilities. However, their broad adoption has been hindered by the high complexity of the LDPC decoder. Although to date, dedicated hardware has been used to implement low latency LDPC decoders, recent advancements in the architecture of mobile processors have made it possible to develop software solutions. In this paper, we propose a multi-stream LDPC decoder designed for a mobile device. The proposed decoder uses graphics processing unit (GPU) of a mobile device to achieve efficient real-time decoding. The proposed solution is implemented on an NVIDIA Tegra board as a system on a chip (SoC), where our results indicate that we can control the load on the central processing units through the multi-stream structure

    Parallel Nonbinary LDPC Decoding on GPU

    Get PDF
    Nonbinary Low-Density Parity-Check (LDPC) codes are a class of error-correcting codes constructed over the Galois field GF(q) for q > 2. As extensions of binary LDPC codes, nonbinary LDPC codes can provide better error-correcting performance when the code length is short or moderate, but at a cost of higher decoding complexity. This paper proposes a massively parallel implementation of a nonbinary LDPC decoding accelerator based on a graphics processing unit (GPU) to achieve both great flexibility and scalability. The implementation maps the Min-Max decoding algorithm to GPU’s massively parallel architecture. We highlight the methodology to partition the decoding task to a heterogeneous platform consisting of the CPU and GPU. The experimental results show that our GPUbased implementation can achieve high throughput while still providing great flexibility and scalability.National Science Foundation (NSF

    A Massively Parallel Implementation of QC-LDPC Decoder on GPU

    Get PDF
    The graphics processor unit (GPU) is able to provide a low-cost and flexible software-based multi-core architecture for high performance computing. However, it is still very challenging to efficiently map the real-world applications to GPU and fully utilize the computational power of GPU. As a case study, we present a GPU-based implementation of a real-world digital signal processing (DSP) application: low-density parity-check (LDPC) decoder. The paper shows the efforts we made to map the algorithm onto the massively parallel architecture of GPU and fully utilize GPU’s computational resources to significantly boost the performance. Moreover, several efficient data structures have been proposed to reduce the memory access latency and the memory bandwidth requirement. Experimental results show that the proposed GPU-based LDPC decoding accelerator can take advantage of the multi-core computational power provided by GPU and achieve high throughput up to 100.3Mbps.Renesas MobileTexas InstrumentsXilinxNational Science Foundatio

    GPUs as Storage System Accelerators

    Full text link
    Massively multicore processors, such as Graphics Processing Units (GPUs), provide, at a comparable price, a one order of magnitude higher peak performance than traditional CPUs. This drop in the cost of computation, as any order-of-magnitude drop in the cost per unit of performance for a class of system components, triggers the opportunity to redesign systems and to explore new ways to engineer them to recalibrate the cost-to-performance relation. This project explores the feasibility of harnessing GPUs' computational power to improve the performance, reliability, or security of distributed storage systems. In this context, we present the design of a storage system prototype that uses GPU offloading to accelerate a number of computationally intensive primitives based on hashing, and introduce techniques to efficiently leverage the processing power of GPUs. We evaluate the performance of this prototype under two configurations: as a content addressable storage system that facilitates online similarity detection between successive versions of the same file and as a traditional system that uses hashing to preserve data integrity. Further, we evaluate the impact of offloading to the GPU on competing applications' performance. Our results show that this technique can bring tangible performance gains without negatively impacting the performance of concurrently running applications.Comment: IEEE Transactions on Parallel and Distributed Systems, 201

    State of the art baseband DSP platforms for Software Defined Radio: A survey

    Get PDF
    Software Defined Radio (SDR) is an innovative approach which is becoming a more and more promising technology for future mobile handsets. Several proposals in the field of embedded systems have been introduced by different universities and industries to support SDR applications. This article presents an overview of current platforms and analyzes the related architectural choices, the current issues in SDR, as well as potential future trends.Peer reviewe
    • …
    corecore