207 research outputs found

    Content delivery over multi-antenna wireless networks

    Get PDF
    The past few decades have witnessed unprecedented advances in information technology, which have significantly shaped the way we acquire and process information in our daily lives. Wireless communications has become the main means of access to data through mobile devices, resulting in a continuous exponential growth in wireless data traffic, mainly driven by the demand for high quality content. Various technologies have been proposed by researchers to tackle this growth in 5G and beyond, including the use of increasing number of antenna elements, integrated point-to-multipoint delivery and caching, which constitute the core of this thesis. In particular, we study non-orthogonal content delivery in multiuser multiple-input-single-output (MISO) systems. First, a joint beamforming strategy for simultaneous delivery of broadcast and unicast services is investigated, based on layered division multiplexing (LDM) as a means of superposition coding. The system performance in terms of minimum required power under prescribed quality-of-service (QoS) requirements is examined in comparison with time division multiplexing (TDM). It is demonstrated through simulations that the non-orthogonal delivery strategy based on LDM significantly outperforms the orthogonal strategy based on TDM in terms of system throughput and reliability. To facilitate efficient implementation of the LDM-based beamforming design, we further propose a dual decomposition-based distributed approach. Next, we study an efficient multicast beamforming design in cache-aided multiuser MISO systems, exploiting proactive content placement and coded delivery. It is observed that the complexity of this problem grows exponentially with the number of subfiles delivered to each user in each time slot, which itself grows exponentially with the number of users in the system. Therefore, we propose a low-complexity alternative through time-sharing that limits the number of subfiles that can be received by a user in each time slot. Moreover, a joint design of content delivery and multicast beamforming is proposed to further enhance the system performance, under the constraint on maximum number of subfiles each user can decode in each time slot. Finally, conclusions are drawn in Chapter 5, followed by an outlook for future works.Open Acces

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    Energy-Efficiency of Cooperative MIMO Wireless Systems

    Get PDF
    Increasing focus on global warming has challenged the scientific community to develop ways to mitigate its adverse effects. This is more so important as different technologies become an integral part of daily human life. Mobile wireless networks and mobile devices form a significant part of these technologies. It is estimated that there are over four billion mobile phone subscribers worldwide and this number is still growing as more people get connected in developing countries [1]. In addition to the growing number of subscribers, there is an explosive growth in high data applications among mobile terminal users. This has put increased demand on the mobile network in terms of energy needed to support both the growth in subscribers and higher data rates. The mobile wireless industry therefore has a significant part to play in the mitigation of global warming effects. To achieve this goal, there is a need to develop and design energy efficient communication schemes for deployment in future networks and upgrades to existing networks. This is not only done in the wireless communication infrastructure but also in mobile terminals. In this thesis a practical power consumption model which includes circuit power consumption from the different components in a transceiver chain is analyzed. This is of great significance to practical system design when doing energy consumption and energy efficiency analysis. The proposed power consumption model is then used to evaluate the energy efficiency in the context of cooperative Multiple Input Multiple Output (MIMO) systems

    Edge Cache-assisted Secure Low-Latency Millimeter Wave Transmission

    Get PDF
    In this paper, we consider an edge cache-assisted millimeter wave cloud radio access network (C-RAN). Each remote radio head (RRH) in the C-RAN has a local cache, which can pre-fetch and store the files requested by the actuators. Multiple RRHs form a cluster to cooperatively serve the actuators, which acquire their required files either from the local caches or from the central processor via multicast fronthaul links. For such a scenario, we formulate a beamforming design problem to minimize the secure transmission delay under transmit power constraint of each RRH. Due to the difficulty of directly solving the formulated problem, we divide it into two independent ones: {\textit{i)}} minimizing the fronthaul transmission delay by jointly optimizing the transmit and receive beamforming; {\textit{ii)}} minimizing the maximum access transmission delay by jointly designing cooperative beamforming among RRHs. An alternatively iterative algorithm is proposed to solve the first optimization problem. For the latter, we first design the analog beamforming based on the channel state information of the actuators. Then, with the aid of successive convex approximation and SS-procedure techniques, a semidefinite program (SDP) is formulated, and an iterative algorithm is proposed through SDP relaxation. Finally, simulation results are provided to verify the performance of the proposed schemes.Comment: IEEE_IoT, Accep

    Performance Analysis of NOMA Multicast Systems Based on Rateless Codes with Delay Constraints

    Get PDF
    To achieve an efficient and reliable data transmission in time-varying conditions, a novel non-orthogonal multiple access (NOMA) transmission scheme based on rateless codes (NOMA-RC) is proposed in the multicast system in this paper. Using rateless codes at the packet level, the system can generate enough encoded data packets according to users’ requirements to cope with adverse environments. The performance of the NOMA-RC multicast system with delay constraints is analyzed over Rayleigh fading channels. The closed-form expressions for the frame error ratio and the average transmission time are derived for two cases which are a broadcast communication scenario (Scenario 1) and a relay communication scenario (Scenario 2). Under the condition that the quality of service for the edge user is satisfied, an optimization model of power allocation is established to maximize the sum rate. Simulation results show that Scenario 2 can provide better block error ratio performance and exhibit less transmission time than Scenario 1. When compared with orthogonal multiple access (OMA) with rateless codes system, the proposed system can save on the transmission time and improve the system throughput
    • …
    corecore