210 research outputs found

    "MASSIVE" Brain Dataset: Multiple Acquisitions for Standardization of Structural Imaging Validation and Evaluation

    Get PDF
    PURPOSE: In this work, we present the MASSIVE (Multiple Acquisitions for Standardization of Structural Imaging Validation and Evaluation) brain dataset of a single healthy subject, which is intended to facilitate diffusion MRI (dMRI) modeling and methodology development. METHODS: MRI data of one healthy subject (female, 25 years) were acquired on a clinical 3 Tesla system (Philips Achieva) with an eight-channel head coil. In total, the subject was scanned on 18 different occasions with a total acquisition time of 22.5 h. The dMRI data were acquired with an isotropic resolution of 2.5 mm(3) and distributed over five shells with b-values up to 4000 s/mm(2) and two Cartesian grids with b-values up to 9000 s/mm(2) . RESULTS: The final dataset consists of 8000 dMRI volumes, corresponding B0 field maps and noise maps for subsets of the dMRI scans, and ten three-dimensional FLAIR, T1 -, and T2 -weighted scans. The average signal-to-noise-ratio of the non-diffusion-weighted images was roughly 35. CONCLUSION: This unique set of in vivo MRI data will provide a robust framework to evaluate novel diffusion processing techniques and to reliably compare different approaches for diffusion modeling. The MASSIVE dataset is made publically available (both unprocessed and processed) on www.massive-data.org. Magn Reson Med, 2016

    HARDI Methods: tractography reconstructions and automatic parcellation of brain connectivity

    Get PDF
    Tese de mestrado integrado em Engenharia Biomédica e Biofísica (Radiações em Diagnóstico e Terapia), apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2012A neuroanatomia humana tem sido objecto de estudo científico desde que surgiu o interesse na organização do corpo humano e nas suas funções, quer como um todo quer através das partes que o constituem. Para atingir este fim, as autópsias foram a primeira forma de revelar algum conhecimento, o qual tem vindo a ser catalogado e sistematizado à medida que a medicina evolui. Passando por novas técnicas de conservação e tratamento de tecido humano, de que são exemplo as dissecções de Klinger, nas quais se fazem secções de material conservado criogenicamente, bem como por estudos histológicos através da utilização de corantes, conseguiu-se uma forma complementar de realizar estes estudos. Permanecia, no entanto, a impossibilidade de analisar in vivo a estrutura e função dos diferentes sistemas que constitutem o Homem. Com o surgimento das técnicas imagiológicas o diagnóstico e monitorização do corpo humano, bem como das patologias a ele associadas, melhoraram consideravelmente. Mais recentemente, com o aparecimento da ressonância magnética (MRI: do Inglês "Magnetic Resonance Imaging"), tornou-se possível estudar as propriedades magnéticas do tecido, reflectindo as suas características intrínsecas com base na aplicação de impulsos de radiofrequência. Através de ressonância magnética é possível estudar essas propriedades em vários núcleos atómicos, sendo mais comum o estudo do hidrogénio, pois somos maioritariamente consistituídos por água e gordura. Uma vez que só é possível medir variações do campo magnético, aplicam-se impulsos de radiofrequência para perturbar o equilíbrio dos spins e medir os seus mecanismos de relaxação, os quais, indirectamente, reflectem a estrutura do tecido. Contudo, o sinal medido é desprovido de qualquer informação espacial. De facto, para podermos proceder a essa quantificação, é necessária a utilização de gradientes de campo magnético, que permitem modificar localmente a frequência de precessão dos protões, através da alteração local do campo magnético, permitindo assim, adquirir o sinal de forma sequencial. A informação obtida constitui uma função variável no espaço e através da transformação de Fourier pode ser quantificada em frequências espaciais, sendo estes dados armazenados no espaço k. O preencimento deste espaço, caracterizado por frequências espaciais, bem como os gradientes de campo magnético que são aplicados, permitem determinar a resolução da imagem que podemos obter, aplicando uma transformação de Fourier inversa. O estudo da ressonância magnética não se restringe à análise da estrutura mas também ao estudo da função e difusão das moléculas de água. A difusão é um processo aleatório, que se traduz pelo movimento térmico das moléculas de água, e o seu estudo permite inferir sobre o estado do tecido e microestrutura associada, de uma forma não invasiva e in vivo. A técnica de imagiologia de ressonância magnética ponderada por difusão (DWI: do Inglês "Diffusion Weighted Imaging") permite o estudo da direccionalidade das moléculas de água e extracção de índices que reflectem directamente a integridade dos tecidos biológicos. De modo a sensibilizar as moléculas de água à difusão, é necessário aplicar sequências de ressonância magnética modificadas, nas quais se aplicam gradientes de campo magnético de difusão para quantificar o deslocamento das moléculas e a sua relação com o coeficiente de difusão das mesmas. Num ambiente livre e sem barreiras a difusão das moléculas de água é isotrópica, uma vez que se apresenta igual em todas as direcções. Todavia, tal não se verifica no corpo humano. A presença destas barreiras leva a que, na verdade, apenas possa ser medido um coeficiente de difusão aparente. Este, por sua vez, traduz a interacção entre as moléculas de água com a microestrutura e, como tal, uma anisotropia na sua difusão. Como caso particular de difusão anisotrópica a nível cerebral, tem-se a difusão das moléculas de água na matéria branca, uma vez que esta apresenta uma direccionalidade preferencial de acordo com a orientação dos axónios, visto estarem presentes menos restrições à sua propagação, ao contrário do que acontece com a direcção perpendicular (devido à membrana celular e às bainhas de mielina). Por oposição, a matéria cinzenta, constituída pelo aglomerado dos corpos celulares dos neurónios, e o líquido cefalorraquidiano apresentam uma difusão sem direcção preferencial (i.e. aproximadamente isotrópica). A informação obtida através da difusão das moléculas de água encontra-se limitada pelo número de direcções segundo o qual aplicamos os gradientes de difusão. Deste modo, surgiu a imagiologia por tensor de difusão (DTI: do Inglês "Diffusion Tensor Imaging"). Esta técnica permite extrair informação acerca da tridimensionalidade da distribuição da difusão de moléculas de água através da aplicação de seis gradientes de difusão não colineares entre si. A distribuição destas moléculas pode, então, ser vista como um elipsóide, no qual o principal vector próprio do tensor representa a contribuição da difusão das moléculas segundo a direcção do axónio (ou paralela), sendo os dois restantes componentes responsáveis pela contribuição transversal. Além da difusividade média (MD: do Inglês "Mean Diffusivity") e das contribuições da difusão paralela (MD//) e perpendicular (MD ) às fibras, é também possível extrair outros índices, como a anisotropia fraccional (FA: do Inglês "Fractional Anisotropy"), que fornece informação acerca da percentagem de difusão anisotrópica num determinado voxel. Para a matéria branca, tal como já foi referido, existe difusão preferencial e, portanto, a anisotropia fraccional será elevada. Por outro lado, para a matéria cinzenta e para o líquido cefalorraquidiano, verificar-se-á uma FA reduzida, devido à ausência de anisotropia. Todavia, regiões com reduzida anisotropia fraccional podem camuflar regiões de conformação de cruzamento de fibras, ou fibras muito anguladas, que a imagiologia por tensor de difusão não consegue resolver. A razão para esta limitação reside no número reduzido de diferentes direcções de difusão que são exploradas, assim como o pressuposto de que a distribuição das moléculas de água é Gaussiana em todo o cérebro, o que não é necessariamente verdade. A fim de se ultrapassar estas limitações, novas técnicas surgiram, nomeadamente as de elevada resolução angular (HARDI: do Inglês "High Angular Resolution Diffusion Imaging"). Estas fazem uso de uma aquisição em função de múltiplas direcções de gradiente e de uma diferente modelação dos dados obtidos, dividindo-se em dois tipos. As técnicas livres de modelos permitem extrair uma função de distribuição da orientação das fibras num determinado voxel directamente do sinal e/ou transformações da função densidade de probabilidade do deslocamento das moléculas de água. Contrariamente, as técnicas baseadas em modelos admitem existir determinados constrangimentos anatómicos e que o sinal proveniente de um determinado voxel é originado por um conjunto de sinais individuais de fibras, caracterizados por uma distribuição preferencial das direcções das fibras. Todos estes métodos têm como objectivo principal recuperar a direcção preferencial da difusão das moléculas de água e reconstruir um trajecto tridimensional que represente a organização das fibras neuronais, pelo que se designam métodos de tractografia. Esta representa a única ferramenta não invasiva de visualização in vivo da matéria branca cerebral e o seu estudo tem revelado uma grande expansão associada ao estabelecimento de marcador biológico para diversas patologias. Adicionalmente, esta técnica tem vindo a tornar-se uma modalidade clínica de rotina e de diversos protocolos de investigação, sendo inclusivamente utilizada para complementar o planeamento em cirurgia, devido à natureza dos dados que gera. Particularmente no caso de dissecções manuais, nas quais os dados de tractografia são manuseados por pessoal especializado, com vista a realizar a parcelização de diferentes tractos de interesse, o processo é moroso e dependente do utilizador, revelando-se necessária a automatização do mesmo. Na realidade, já existem técnicas automáticas que fazem uso de algoritmos de agregação1, nos quais fibras são analisadas e agrupadas segundo características semelhantes, assim como técnicas baseadas em regiões de interesse, em que se extraem apenas os tractos seleccionados entre as regiões escolhidas. O objectivo principal desta dissertação prende-se com a análise automática de dados de tractografia, bem como a parcelização personalizada de tractos de interesse, também esta automática. Em primeiro lugar, foi desenvolvido um algoritmo capaz de lidar automaticamente com funções básicas de carregamento dos ficheiros de tractografia, o seu armazenamento em variáveis fáceis de manusear e a sua filtragem básica de acordo com regiões de interesse de teste. Neste processo de filtragem é feita a avaliação das fibras que atravessam a região de interesse considerada. Assim, após a localização das fibras entre as regiões de interesse os tractos resultantes podem ser guardados de duas formas, as quais têm, necessariamente, que ser especificadas antes de utilizar o software: um ficheiro que contém todas as fibras resultantes da parcelização e outro que contém o mapa de densidade associado, isto é, o número de fibras que se encontra em cada voxel. Após esta fase inicial, a flexibilidade e complexidade do software foi aumentando, uma vez que foram implementados novos filtros e a possibilidade de utilizar regiões de interesse de diferentes espaços anatómicos padrão. Fazendo uma análise a esta última melhoria, pode referir-se que, através de um procedimento de registo não linear da imagem anatómica do espaço padrão ao espaço individual de cada sujeito, foi possível, de forma automática, guardar o campo de deformações que caracteriza a transformação e, assim, gerar regiões de interesse personalizadas ao espaço do sujeito. Estas regiões de interesse serviram depois para a parcelização básica e para seleccionar tractos, mas também para filtragens adicionais, como a exclusão de fibras artefactuosas2 e um filtro especial, no qual apenas os pontos que ligam directamente as diferentes regiões são mantidos. Além do que já foi referido, recorreu-se também à aplicação de planos de interesse que actuam como constrangimentos neuroanatómicos, o que não permite, por exemplo, no caso da radiação óptica, que as fibras se propaguem para o lobo frontal. Esta ferramenta foi utilizada com sucesso para a parcelização automática do Fascículo Arcuado, Corpo Caloso e Radiação Óptica, tendo sido feita a comparação com a dissecção manual, em todos os casos. O estudo do Fasciculo Arcuado demonstrou ser o teste ideal para a ferramenta desenvolvida na medida que permitiu identificar o segmento longo, assim como descrito na literatura. O método automático de duas regiões de interesse deu a origem aos mesmos resultados obtidos manualmente e permitiu confirmar a necessidade de estudos mais aprofundados. Aumentando a complexidade do estudo, realizou-se a parcelização do Corpo Caloso de acordo com conectividade estrutural, isto é, com diferentes regiões envolvidas em funções distintas. Procedeu-se deste modo, e não com base em informação acerca de divisões geométricas, uma vez que estas já demonstraram incongruências quando correlacionadas com subdivisões funcionais. O uso adicional de regiões de interesse para a exclusão de fibras demonstrou-se benéfico na obtenção dos mapas finais. Finalmente, incluiu-se a utilização de um novo filtro para realizar a parcelização da Radiação Óptica, comparando os resultados para DTI e SD(do Inglês "Spherical Deconvolution"). Foi possível determinar limitações na primeira técnica que foram, no entanto, ultrapassadas pela utilização de SD. O atlas final gerado apresenta-se como uma mais-valia para o planeamento cirúrgico num ambiente clínico. O desenvolvimento desta ferramenta resultou em duas apresentações orais em conferências internacionais e encontra-se, de momento, a ser melhorada, a fim de se submeter um artigo de investigação original. Embora se tenha chegado a um resultado final positivo, tendo em conta a meta previamente estabelecida, está aberto o caminho para o seu aperfeiçoamento. Como exemplo disso, poder-se-á recorrer ao uso combinado das duas abordagens de parcelização automática e à utilização de índices específicos dos tractos, o que poderá trazer uma nova força à delineação dos tractos de interesse. Adicionalmente, é também possível melhorar os algoritmos de registo de imagem, tendo em conta a elevada variabilidade anatómica que alguns sujeitos apresentam. Como nota final, gostaria apenas de salientar que a imagiologia por difusão e, em particular, a tractografia, têm ainda muito espaço para progredir. A veracidade desta afirmação traduz-se pela existência de uma grande variedade de modelos e algoritmos implementados, sem que, no entanto, exista consenso na comunidade científica acerca da melhor abordagem a seguir.Diffusion weighted imaging (DWI) has provided us a non-invasive technique to determine physiological information and infer about tissue microstructure. The human body is filled with barriers affecting the mobility of molecules and preventing it from being constant in different directions (anisotropic diffusion). In the brain, the sources for this anisotropy arise from dense packing axons and from the myelin sheath that surrounds them. Only with Diffusion Tensor Imaging (DTI) it was possible to fully characterize anisotropy by offering estimations for average diffusivities in each voxel. However, these methods were limited, not being able to reflect the index of anisotropic diffusion in regions with complex fibre conformations. It was possible to reduce those problems through the acquisition of many gradient directions with High Angular Resolution Diffusion Imaging (HARDI). There are model-free approaches such as Diffusion Spectrum Imaging (DSI) and Q-ball Imaging (QBI) which retrieve an orientation distribution function (ODF) directly from the water molecular displacement. Another method is Spherical Deconvolution, which is a model-based approach based on the computation of a fibre orientation distribution (FOD) from the deconvolution of the diffusion signal and a chosen fibre response function. Reconstructing the fibre orientations from the diffusion profile, generates a three-dimensional reconstruction of neuronal fibres (Tractography) whether in a deterministic, probabilistic or global way. Tractography has two main purposes: non-invasive and in vivo mapping of human white matter and neurosurgical planning. In order to achieve those purposes it is common to apply parcellation techniques which can be subdivided into ROI-based or Clustering base. The aim of this project is to develop an automated method of tract-based parcellation of different brain regions. This tool is essential to retrieve information about the architecture and connectivity of the brain, overcoming time consuming and expertise related issues derived from manual dissections. Firstly we investigated basic functions to handle diffusion and tractography data. In particular, we focused on how to load track files, filter them according to regions of interest and save the output in different formats. Results were always compared with manual dissection. The developed tool increased complexity by introduction a new filtering and the use of regions of interest from different standard spaces, created trough non-linear registrations. Three major tracts of interest were analysed: Arcuate Fasciculus, Corpus Callosum and Optic Radiation

    Adaptive microstructure-informed tractography for accurate brain connectivity analyses

    Get PDF
    Human brain has been subject of deep interest for centuries, given it's central role in controlling and directing the actions and functions of the body as response to external stimuli. The neural tissue is primarily constituted of neurons and, together with dendrites and the nerve synapses, constitute the gray matter (GM) which plays a major role in cognitive functions. The information processed in the GM travel from one region to the other of the brain along nerve cell projections, called axons. All together they constitute the white matter (WM) whose wiring organization still remains challenging to uncover. The relationship between structure organization of the brain and function has been deeply investigated on humans and animals based on the assumption that the anatomic architecture determine the network dynamics. In response to that, many different imaging techniques raised, among which diffusion-weighted magnetic resonance imaging (DW-MRI) has triggered tremendous hopes and expectations. Diffusion-weighted imaging measures both restricted and unrestricted diffusion, i.e. the degree of movement freedom of the water molecules, allowing to map the tissue fiber architecture in vivo and non-invasively. Based on DW-MRI data, tractography is able to exploit information of the local fiber orientation to recover global fiber pathways, called streamlines, that represent groups of axons. This, in turn, allows to infer the WM structural connectivity, becoming widely used in many different clinical applications as for diagnoses, virtual dissections and surgical planning. However, despite this unique and compelling ability, data acquisition still suffers from technical limitations and recent studies have highlighted the poor anatomical accuracy of the reconstructions obtained with this technique and challenged its effectiveness for studying brain connectivity. The focus of this Ph.D. project is to specifically address these limitations and to improve the anatomical accuracy of the structural connectivity estimates. To this aim, we developed a global optimization algorithm that exploits micro and macro-structure information, introducing an iterative procedure that uses the underlying tissue properties to drive the reconstruction using a semi-global approach. Then, we investigated the possibility to dynamically adapt the position of a set of candidate streamlines while embedding the anatomical prior of trajectories smoothness and adapting the configuration based on the observed data. Finally, we introduced the concept of bundle-o-graphy by implementing a method to model groups of streamlines based on the concept that axons are organized into fascicles, adapting their shape and extent based on the underlying microstructure

    From Diffusion to Tracts

    Get PDF
    Diffusion of water molecules within the brain tissue can be used to modulate the nuclear magnetic resonance signal that is used to form magnetic resonance images (MRI). As the signal itself can be noisy and its meaning challenging to interpret, mathematical models are generally fitted to these measurements to obtain the more accurate characterization of the brain microstructure. This, of course, requires that the mathematical model itself is sound in respect to the measurement setup. This dissertation focuses on the extensively used tensor models as they have been shown to unravel details of the physical diffusion phenomena along with various applications in the basic neuroscience, the clinical research, and even in the neurosurgery. One of the greatest challenges in the diffusion weighted MRI measurements is subject motion during the image acquisition as that can cause a complete loss of the measurement which is especially highlighted in ill or uncooperative patients studies. Due to the used acquisition technique, this loss extends to multiple measurements simultaneously resulting in an enormous gap in the sampling. Such gaps can be problematic for any model fitting, even for the currently available robust means developed to exclude outlier measurements from affecting the estimate. Hence in this dissertation, a tool coined as SOLID was developed to detect these outliers and to robustly process them during the tensor based model estimation. SOLID was implemented as a part of the widely used ExploreDTI toolbox to allow the rapid international distribution of the tool. Unfortunately, any reduction in the measurement sampling will lead to increasing error propagation during the model estimation. Mathematically this is detailed in terms of a condition number for the matrix inversion in the linear least squares fitting. Previously, the condition number has been used to optimize the diffusion weighted MRI acquisition gradient scheme but in this dissertation it was renovated into a novel quality control tool. The condition number of the matrix inversion that provides the model estimate can be calculated after the outliers are excluded to assess spatially and directionally varying error propagation to obviate any bias in subject or population studies. To motivate the importance of the robust methods and diffusion weighted MRI at large, neurocognitive studies with neonates’ visual abilities and bilinguals’ acquisition age of the second language were conducted as a part of this thesis. The findings in these studies indicated that premature birth affects the white matter structures across the brain whereas the age of acquisition of the second language affects only the speech related brain structures.Aivojen rakenteessa tapahtuvien muutosten mittaaminen on avainasemassa tutkittaessa esimerkiksi keskosena syntyneen lapsen kehitystä tai uusien taitojen, kuten kielten, oppimista. Ihmisaivojen tutkiminen on aiemmin rajoittunut aivojen toiminnan arviointiin aivosähkökäyrän ja neurokognitiivisten testien avulla. Viime vuosikymmenten kehitys magneettikuvaustekniikassa on tuonut mahdollisuuden tutkia kajoamattomasti myös aivojen rakennetta ja jopa seurata sen muutosta lapsen kasvaessa tai ihmisen oppiessa uusia taitoja. Yksi lupaavimmista aivojen tutkimusmenetelmistä on diffuusiopainotettu magneettikuvaus, jolle on löytynyt lukuisia käyttökohteita niin neurotieteessä, lääketieteellisissä tutkimuksissa kuin neurokirurgiassakin. Menetelmä perustuu vesimolekyylien lämpöliikkeen mittaamiseen aivoissa. Molekyylien liike on vapaata muun muassa valkean aineen rakenteiden myötäisesti, mutta lähes mahdotonta kohtisuoraan niiden lävitse. Jäljittämällä nämä reitit voidaan muodostaa tarkka malli aivojen rakenteesta. Mallin pohjalta on mahdollista laskea kuvaavia arvoja, jotka auttavat esimerkiksi määrittämään aivovaurion astetta. Diffuusiopainotetun magneettikuvauksen suurin haaste on menetelmän monimutkaisuus sekä mittauksen että analyysin osalta. Vain hyvin yksinkertaisissa tapauksissa asiantuntija voi arvioida suoraan diffuusiopainotetusta magneettikuvasta poikkeamia aivoissa. Yleensä käytetään matemaattisia menetelmiä kuvan tarkempaan analysointiin. Tällöin keskeistä on inversio-ongelman ratkaisu, missä potilaasta tehdyt mittaukset sovitetaan aivoja kuvaavaan matemaattiseen malliin. Sopivan mallin valinnalla on siis suuri vaikutus lopputuloksen hyödyllisyyteen. Diffuusiopainotettu magneettikuvaus on myös häiriöherkkä ja mittaukset sisältävät luonnostaan paljon kohinaa, jonka vaikutusta vähennetään tekemällä toistomittauksia. Toistomittaukset pidentävät kuvausaikaa, joka puolestaan voi olla haasteellinen potilaalle, koska potilaan pitää olla liikkumatta koko kuvauksen ajan. Potilaan pään pienikin liike voi johtaa huomattaviin mittavirheisiin, koska menetelmällä mitataan vesimolekyylien liikettä, jonka suuruus on vain kymmenien mikrometrien luokkaa. Tässä fysiikan väitöskirjassa keskityttiin diffuusiopainotetun magneettikuvauksen mallintamismenetelmien kehitystyöhön ja niiden käyttöönottoon Helsingin yliopistollisessa sairaalassa. Kehitimme kansainvälistä huomiota herättäneen SOLID-työkalun, jolla voidaan havaita sekä korjata potilaan liikkeestä aiheutuvia virheitä mittaustuloksissa. Tämän lisäksi esitimme laadunvalvonta menetelmän, jolla voidaan arvioida esimerkiksi potilaiden välisten mallinnustulosten vertailukelpoisuutta. Kehitettyjä menetelmiä testattiin ja sovellettiin kahdessa tutkimuksessa: Osoitimme, että vastasyntyneen lapsen kyky seurata katseellaan liikkuvaa kohdetta liittyy laaja-alaisiin muutoksiin aivojen valkean aineen rakenteessa. Lisäksi näytimme, että toisen kielen oppimisajankohta vaikuttaa aivojen puheentuottoon liittyvien aivorakenteiden muodostumiseen

    Tractographie adaptative basée sur la microstructure pour des analyses précises de la connectivité cérébrale

    Get PDF
    Le cerveau est un sujet de recherche depuis plusieurs décennies, puisque son rôle est central dans la compréhension du genre humain. Le cerveau est composé de neurones, où leurs dendrites et synapses se retrouvent dans la matière grise alors que les axones en constituent la matière blanche. L’information traitée dans les différentes régions de la matière grise est ensuite transmise par l’intermédiaire des axones afin d’accomplir différentes fonctions cognitives. La matière blanche forme une structure d’interconnections complexe encore dif- ficile à comprendre et à étudier. La relation entre l’architecture et la fonction du cerveau a été étudiée chez les humains ainsi que pour d’autres espèces, croyant que l’architecture des axones déterminait la dynamique du réseau fonctionnel. Dans ce même objectif, l’Imagerie par résonance (IRM) est un outil formidable qui nous permet de visualiser les tissus cérébraux de façon non-invasive. Plus partic- ulièrement, l’IRM de diffusion permet d’estimer et de séparer la diffusion libre de celle restreinte par la structure des tissus. Cette mesure de restriction peut être utilisée afin d’inférer l’orientation locale des faisceaux de matière blanche. L’algorithme de tractographie exploite cette carte d’orientation pour reconstruire plusieurs connexions de la matière blanche (nommées “streamlines”). Cette modélisation de la matière blanche permet d’estimer la connectivité cérébrale dite structurelle entre les différentes régions du cerveau. Ces résultats peuvent être employés directement pour la planification chirurgicale ou indirectement pour l’analyse ou une évaluation clinique. Malgré plusieurs de ses limitations, telles que sa variabilité et son imprécision, la tractographie reste l’unique moyen d’étudier l’architecture de la matière blanche ainsi que la connectivité cérébrale de façon non invasive. L’objectif de ce projet de doctorat est de répondre spécifiquement à ces limitations et d’améliorer la précision anatomique des estimations de connectivité structurelle. Dans ce but, nous avons développé un algorithme d’optimisation globale qui exploite les informations de micro et macrostructure, en introduisant une procédure itéra- tive qui utilise les propriétés sous-jacentes des tissus pour piloter la reconstruction en utilisant une approche semi-globale. Ensuite, nous avons étudié la possibilité d’adapter dynamiquement la position d’un ensemble de lignes de courant candidates tout en intégrant le préalable anatomique de la douceur des trajectoires et en adap- tant la configuration en fonction des données observées. Enfin, nous avons introduit le concept de bundle-o-graphy en mettant en œuvre une méthode pour modéliser des groupes de lignes de courant basées sur le concept que les axones sont organisés en fascicules, en adaptant leur forme et leur étendue en fonction de la microstructure sous-jacente.Abstract : Human brain has been subject of deep interest for centuries, given it’s central role in controlling and directing the actions and functions of the body as response to external stimuli. The neural tissue is primarily constituted of neurons and, together with dendrites and the nerve synapses, constitute the gray matter (GM) which plays a major role in cognitive functions. The information processed in the GM travel from one region to the other of the brain along nerve cell projections, called axons. All together they constitute the white matter (WM) whose wiring organization still remains challenging to uncover. The relationship between structure organization of the brain and function has been deeply investigated on humans and animals based on the assumption that the anatomic architecture determine the network dynamics. In response to that, many different imaging techniques raised, among which diffusion-weighted magnetic resonance imaging (DW-MRI) has triggered tremendous hopes and expectations. Diffusion-weighted imaging measures both restricted and unrestricted diffusion, i.e. the degree of movement freedom of the water molecules, allowing to map the tissue fiber architecture in vivo and non-invasively. Based on DW-MRI data, tractography is able to exploit information of the local fiber orien- tation to recover global fiber pathways, called streamlines, that represent groups of axons. This, in turn, allows to infer the WM structural connectivity, becoming widely used in many different clinical applications as for diagnoses, virtual dissections and surgical planning. However, despite this unique and compelling ability, data acqui- sition still suffers from technical limitations and recent studies have highlighted the poor anatomical accuracy of the reconstructions obtained with this technique and challenged its effectiveness for studying brain connectivity. The focus of this Ph.D. project is to specifically address these limitations and to improve the anatomical accuracy of the structural connectivity estimates. To this aim, we developed a global optimization algorithm that exploits micro and macro- structure information, introducing an iterative procedure that uses the underlying tissue properties to drive the reconstruction using a semi-global approach. Then, we investigated the possibility to dynamically adapt the position of a set of candidate streamlines while embedding the anatomical prior of trajectories smoothness and adapting the configuration based on the observed data. Finally, we introduced the concept of bundle-o-graphy by implementing a method to model groups of streamlines based on the concept that axons are organized into fascicles, adapting their shape and extent based on the underlying microstructure.Sommario : Il cervello umano è oggetto di profondo interesse da secoli, dato il suo ruolo centrale nel controllare e dirigere le azioni e le funzioni del corpo in risposta a stimoli esterno. Il tessuto neurale è costituito principalmente da neuroni che, insieme ai dendriti e alle sinapsi nervose, costituiscono la materia grigia (GM), la quale riveste un ruolo centrale nelle funzioni cognitive. Le informazioni processate nella GM viaggiano da una regione all’altra del cervello lungo estensioni delle cellule nervose, chiamate assoni. Tutti insieme costituiscono la materia bianca (WM) la cui organizzazione strutturale rimane tuttora sconosciuta. Il legame tra struttura e funzione del cervello sono stati studiati a fondo su esseri umani e animali partendo dal presupposto che l’architettura anatomica determini la dinamica della rete funzionale. In risposta a ciò, sono emerse diverse tecniche di imaging, tra cui la risonanza magnetica pesata per diffusione (DW-MRI) ha suscitato enormi speranze e aspettative. Questa tecnica misura la diffusione sia libera che ristretta, ovvero il grado di libertà di movimento delle molecole d’acqua, consentendo di mappare l’architettura delle fibre neuronali in vivo e in maniera non invasiva. Basata su dati DW-MRI, la trattografia è in grado di sfruttare le informazioni sull’orientamento locale delle fibre per ricostruirne i percorsi a livello globale. Questo, a sua volta, consente di estrarre la connettività strutturale della WM, utilizzata in diverse applicazioni cliniche come per diagnosi, dissezioni virtuali e pianificazione chirurgica. Tuttavia, nonostante questa capacità unica e promettente, l’acquisizione dei dati soffre ancora di limitazioni tecniche e recenti studi hanno messo in evidenza la scarsa accuratezza anatomica delle ricostruzioni ottenute con questa tecnica, mettendone in dubbio l’efficacia per lo studio della connettività cerebrale. Il focus di questo progetto di dottorato è quello di affrontare in modo specifico queste limitazioni e di migliorare l’accuratezza anatomica delle stime di connettività strutturale. A tal fine, abbiamo sviluppato un algoritmo di ottimizzazione globale che sfrutta le informazioni sia micro che macrostrutturali, introducendo una procedura iterativa che utilizza le proprietà del tessuto neuronale per guidare la ricostruzione utilizzando un approccio semi-globale. Successivamente, abbiamo studiato la possibilità di adattare dinamicamente la posizione di un insieme di streamline candidate incorporando il prior anatomico per cui devono seguire traiettorie regolari e adattando la configurazione in base ai dati osservati. Infine, abbiamo introdotto il concetto di bundle-o-graphy implementando un metodo per modellare gruppi di streamline basato sul concetto che gli assoni sono organizzati in fasci, adattando la loro forma ed estensione in base alla microstruttura sottostante

    Unsupervised deep learning of human brain diffusion magnetic resonance imaging tractography data

    Get PDF
    L'imagerie par résonance magnétique de diffusion est une technique non invasive permettant de connaître la microstructure organisationnelle des tissus biologiques. Les méthodes computationnelles qui exploitent la préférence orientationnelle de la diffusion dans des structures restreintes pour révéler les voies axonales de la matière blanche du cerveau sont appelées tractographie. Ces dernières années, diverses méthodes de tractographie ont été utilisées avec succès pour découvrir l'architecture de la matière blanche du cerveau. Pourtant, ces techniques de reconstruction souffrent d'un certain nombre de défauts dérivés d'ambiguïtés fondamentales liées à l'information orientationnelle. Cela a des conséquences dramatiques, puisque les cartes de connectivité de la matière blanche basées sur la tractographie sont dominées par des faux positifs. Ainsi, la grande proportion de voies invalides récupérées demeure un des principaux défis à résoudre par la tractographie pour obtenir une description anatomique fiable de la matière blanche. Des approches méthodologiques innovantes sont nécessaires pour aider à résoudre ces questions. Les progrès récents en termes de puissance de calcul et de disponibilité des données ont rendu possible l'application réussie des approches modernes d'apprentissage automatique à une variété de problèmes, y compris les tâches de vision par ordinateur et d'analyse d'images. Ces méthodes modélisent et trouvent les motifs sous-jacents dans les données, et permettent de faire des prédictions sur de nouvelles données. De même, elles peuvent permettre d'obtenir des représentations compactes des caractéristiques intrinsèques des données d'intérêt. Les approches modernes basées sur les données, regroupées sous la famille des méthodes d'apprentissage profond, sont adoptées pour résoudre des tâches d'analyse de données d'imagerie médicale, y compris la tractographie. Dans ce contexte, les méthodes deviennent moins dépendantes des contraintes imposées par les approches classiques utilisées en tractographie. Par conséquent, les méthodes inspirées de l'apprentissage profond conviennent au changement de paradigme requis, et peuvent ouvrir de nouvelles possibilités de modélisation, en améliorant ainsi l'état de l'art en tractographie. Dans cette thèse, un nouveau paradigme basé sur les techniques d'apprentissage de représentation est proposé pour générer et analyser des données de tractographie. En exploitant les architectures d'autoencodeurs, ce travail tente d'explorer leur capacité à trouver un code optimal pour représenter les caractéristiques des fibres de la matière blanche. Les contributions proposées exploitent ces représentations pour une variété de tâches liées à la tractographie, y compris (i) le filtrage et (ii) le regroupement efficace sur les résultats générés par d'autres méthodes, ainsi que (iii) la reconstruction proprement dite des fibres de la matière blanche en utilisant une méthode générative. Ainsi, les méthodes issues de cette thèse ont été nommées (i) FINTA (Filtering in Tractography using Autoencoders), (ii) CINTA (Clustering in Tractography using Autoencoders), et (iii) GESTA (Generative Sampling in Bundle Tractography using Autoencoders), respectivement. Les performances des méthodes proposées sont évaluées par rapport aux méthodes de l'état de l'art sur des données de diffusion synthétiques et des données de cerveaux humains chez l'adulte sain in vivo. Les résultats montrent que (i) la méthode de filtrage proposée offre une sensibilité et spécificité supérieures par rapport à d'autres méthodes de l'état de l'art; (ii) le regroupement des tractes dans des faisceaux est fait de manière consistante; et (iii) l'approche générative échantillonnant des tractes comble mieux l'espace de la matière blanche dans des régions difficiles à reconstruire. Enfin, cette thèse révèle les possibilités des autoencodeurs pour l'analyse des données des fibres de la matière blanche, et ouvre la voie à fournir des données de tractographie plus fiables.Abstract : Diffusion magnetic resonance imaging is a non-invasive technique providing insights into the organizational microstructure of biological tissues. The computational methods that exploit the orientational preference of the diffusion in restricted structures to reveal the brain's white matter axonal pathways are called tractography. In recent years, a variety of tractography methods have been successfully used to uncover the brain's white matter architecture. Yet, these reconstruction techniques suffer from a number of shortcomings derived from fundamental ambiguities inherent to the orientation information. This has dramatic consequences, since current tractography-based white matter connectivity maps are dominated by false positive connections. Thus, the large proportion of invalid pathways recovered remains one of the main challenges to be solved by tractography to obtain a reliable anatomical description of the white matter. Methodological innovative approaches are required to help solving these questions. Recent advances in computational power and data availability have made it possible to successfully apply modern machine learning approaches to a variety of problems, including computer vision and image analysis tasks. These methods model and learn the underlying patterns in the data, and allow making accurate predictions on new data. Similarly, they may enable to obtain compact representations of the intrinsic features of the data of interest. Modern data-driven approaches, grouped under the family of deep learning methods, are being adopted to solve medical imaging data analysis tasks, including tractography. In this context, the proposed methods are less dependent on the constraints imposed by current tractography approaches. Hence, deep learning-inspired methods are suit for the required paradigm shift, may open new modeling possibilities, and thus improve the state of the art in tractography. In this thesis, a new paradigm based on representation learning techniques is proposed to generate and to analyze tractography data. By harnessing autoencoder architectures, this work explores their ability to find an optimal code to represent the features of the white matter fiber pathways. The contributions exploit such representations for a variety of tractography-related tasks, including efficient (i) filtering and (ii) clustering on results generated by other methods, and (iii) the white matter pathway reconstruction itself using a generative method. The methods issued from this thesis have been named (i) FINTA (Filtering in Tractography using Autoencoders), (ii) CINTA (Clustering in Tractography using Autoencoders), and (iii) GESTA (Generative Sampling in Bundle Tractography using Autoencoders), respectively. The proposed methods' performance is assessed against current state-of-the-art methods on synthetic data and healthy adult human brain in vivo data. Results show that the (i) introduced filtering method has superior sensitivity and specificity over other state-of-the-art methods; (ii) the clustering method groups streamlines into anatomically coherent bundles with a high degree of consistency; and (iii) the generative streamline sampling technique successfully improves the white matter coverage in hard-to-track bundles. In summary, this thesis unlocks the potential of deep autoencoder-based models for white matter data analysis, and paves the way towards delivering more reliable tractography data

    Improving the Tractography Pipeline: on Evaluation, Segmentation, and Visualization

    Get PDF
    Recent advances in tractography allow for connectomes to be constructed in vivo. These have applications for example in brain tumor surgery and understanding of brain development and diseases. The large size of the data produced by these methods lead to a variety problems, including how to evaluate tractography outputs, development of faster processing algorithms for tractography and clustering, and the development of advanced visualization methods for verification and exploration. This thesis presents several advances in these fields. First, an evaluation is presented for the robustness to noise of multiple commonly used tractography algorithms. It employs a Monte–Carlo simulation of measurement noise on a constructed ground truth dataset. As a result of this evaluation, evidence for obustness of global tractography is found, and algorithmic sources of uncertainty are identified. The second contribution is a fast clustering algorithm for tractography data based on k–means and vector fields for representing the flow of each cluster. It is demonstrated that this algorithm can handle large tractography datasets due to its linear time and memory complexity, and that it can effectively integrate interrupted fibers that would be rejected as outliers by other algorithms. Furthermore, a visualization for the exploration of structural connectomes is presented. It uses illustrative rendering techniques for efficient presentation of connecting fiber bundles in context in anatomical space. Visual hints are employed to improve the perception of spatial relations. Finally, a visualization method with application to exploration and verification of probabilistic tractography is presented, which improves on the previously presented Fiber Stippling technique. It is demonstrated that the method is able to show multiple overlapping tracts in context, and correctly present crossing fiber configurations

    Optimization of the diffusion-weighted MRI processing pipeline for the longitudinal assessment of the brain microstructure in a rat model of Alzheimer’s disease

    Get PDF
    Tese de mestrado integrado, Engenharia Biomédica e Biofísica (Radiações em Diagnóstico e Terapia) Universidade de Lisboa, Faculdade de Ciências, 2019The mechanism that triggers Alzheimer’s disease (AD) is not well-established, with amyloid plaques, neurofibrillary tangles of tau protein, microgliosis and glucose hypometabolism all likely involved in the early cascade. One main advantage of animal models is the possibility to tease out the impact of each insult on the neurodegeneration. Following an intracerebroventricular (icv) injection of streptozotocin (STZ), rats and monkeys develop impaired brain glucose metabolism, i.e. “diabetes of the brain”. Nu-merous studies have reported AD-like features in icv-STZ animals, but this model has never been char-acterized in terms of Magnetic Resonance Imaging (MRI)-derived biomarkers beyond structural brain atrophy. White matter degeneration has been proposed as a promising biomarker for AD that well pre-cedes cortical atrophy and correlates strongly with disease severity. Therefore, this project proposes a longitudinal study of white matter degeneration in icv-STZ rats using diffusion MRI. An existing image processing pipeline was primarily used to obtain preliminary results and propose an optimization strat-egy to improve it in terms of data quality and reliability. These strategies were tested and implemented in the pipeline when confirmed to be valuable, in order to achieve results as reproducible as possible and find the spatio-temporal pattern of brain degeneration in this animal model. All experiments were approved by the local Service for Veterinary Affairs. Male Wistar rats (N=18) (236±11 g) underwent a bilateral icv-injection of either streptozotocin (3 mg/kg, STZ group, N=10) or buffer (control group, CTL, N=8). Rats were scanned at four timepoints following surgery on a 14 T Varian system. Diffusion data were acquired using a semi-adiabatic SE-EPI PGSE sequence as follows: 4 (b=0 ms/μm2), 12 (b=0.8 ms/μm2), 16 (b=1.3 ms/μm2) and 30 (b=2 ms/μm2) directions; TE/TR=48/2500 ms, 9 coronal 1 mm slices, δ/Δ=4/27 ms, FOV=23x17 mm2, matrix=128x64 and 4 shots. The existing image processing pipeline included image denoising and eddy-correction. Moreover, diffusion and kurtosis tensors were calculated for each voxel, producing parametric maps of fractional anisotropy (FA), mean, axial and radial diffusivity (MD, AxD and RD) and mean, axial and radial kur-tosis (MK, AK and RK). Additionally, the two-compartment WMTI-Watson model was further esti-mated to provide specificity to the microstructure assessment. The following metrics were derived from the model: volume water fraction , parallel intra-axonal diffusivity , parallel ,║ and perpendicular extra-axonal diffusivities ,ꓕ and dispersion of fiber orientations 2. Since the model allows for two mathematical solutions, the >,║ solution was retained based on recent evidence. Considering pre-vious findings, the corpus callosum, cingulum, fornix and fimbria were chosen as white matter regions of interest (ROIs) and automatically segmented using anatomical atlas-based registration. Mean diffu-sion metrics were calculated in each ROI for each dataset. CTL and STZ groups were compared using two-sided t-tests at each timepoint. Within-group longitudinal changes were assessed using one-way ANOVA. Because of the small cohort, statistical analysis excluded the last time point. In the course of this project, strategies to optimize the existing pipeline were developed and tested. The existing brain atlas template was supplemented with white matter labels, rat brain extraction was semi-automated, and bias field correction of anatomical data was added before registration. Ventricle enlargement is typically reported in icv-STZ animals and normally constitutes an issue of misalignment in registration. In order to better match the label ROIs with the respective underlying tissue, several registration procedures were tested with different FA and color-coded FA template images. Color-coded FA-based registration dramatically improved the segmentation of the corpus callosum and the fimbria and reliability of diffusion metrics extracted from these regions. Moreover, additional fiber metrics were extracted from a newly developed tractography pipeline to compare with tensors metrics and finally, tensors metrics were evaluated in the gray matter for a more comprehensive spatio-temporal character-ization of brain degeneration. Results from statistical analysis were obtained after implementing the successful optimization strat-egies into the pipeline. There were few significant differences within groups over time. However, be-tween-group differences at each time point were more pronounced. White matter microstructure altera-tions were consistent with previous studies of histology and cognitive performance of the icv-STZ model. Changes in tensors metrics indicate early axonal injury in the fimbria and fornix at 2 weeks after injection, a period of potential recovery at 6 weeks after injection and late axonal injury at 13 weeks in all ROIs. The WMTI-Watson biophysical model provided specificity to the underlying microstructure, by showing intra-axonal damage in the fimbria and corpus callosum as early as 2 weeks, followed by a recover period and definite axonal loss at 13 weeks after injection. Results from tensors metrics and the WMTI-Watson model are not only complementary, they are consistent with each other and with previously-established trends for structural thickness, memory per-formance, amyloid deposition and inflammation. The icv-STZ model displays white matter changes in tracts reportedly affected by AD, while the degeneration is induced primarily by impaired brain glucose metabolism. The icv-STZ constitutes an excellent model to reproduce sporadic AD and should allow to further explore the hypothesis of AD being “type III diabetes”. The combination of diffusion information extracted from tensor imaging and biophysical modelling is a promising set of tools to assess white matter in the AD brain and might be the upcoming strategy to assess the human brain. Regarding future work, it will focus on estimating the correlation between microstructural alterations and functional con-nectivity (from resting-state functional MRI), glucose hypometabolism (from FDG-PET), and patholog-ical features (from histological stainings) – all currently under processing at CIBM. Tractography is a cutting-edge methodology to assess brain connectivity and the pipeline created could be further devel-oped to improve understanding and support diffusion metrics. The relationship between white and gray matter will also improve the understanding of spatio-temporal degeneration and the progression nature of the disease.O mecanismo que desencadeia a doença de Alzheimer (DA) não é bem conhecido, contudo sabe-se que a presença de placas amilóides e de emaranhados neurofibrilares da proteína tau, microgliose e ainda hipometabolismo de glucose estão envolvidos na fase inicial da cascata de desenvolvimento da doença. A principal vantagem dos modelos animais é justamente a possibilidade de estudar individualmente o impacto de cada um destes mecanismos no processo de neurodegeneração. Após uma injeção intracere-broventricular (icv) de estreptozotocina (STZ), várias espécies de animais mostraram um metabolismo anormal de glucose no cérebro, processo que foi referido como “diabetes do cérebro”. Vários estudos demonstraram que animais icv-STZ são portadores de características típicas de DA, mas este modelo animal nunca foi estudado em termos de biomarcadores derivados de técnicas de imagem por ressonân-cia magnética (IRM), exceto atrofia estrutural do cérebro. Um biomarcador promissor de DA que se acredita preceder a atrofia do córtex cerebral é a degeneração da matéria branca do cérebro, uma vez que foi fortemente correlacionado com a progressão e gravidade da doença. Logo, este projeto propõe um estudo longitudinal da degeneração da matéria branca em ratazanas icv-STZ utilizando IRM de di-fusão. O plano de processamento de imagem existente foi utilizado primeiramente para obter resultados preliminares e viabilizar a proposta de estratégias de otimização da mesma, em termos de melhoramento da qualidade de imagem e credibilidade das variáveis extraídas das imagens resultantes. Estas estratégias foram testadas e implementadas no plano de processamento quando a sua performance confirmou ser de valor, para que os resultados fossem o mais reproduzíveis possível em caracterizar a distribuição espácio-temporal da degeneração do cérebro neste modelo animal. Todos os procedimentos aqui descritos foram aprovados pelo serviço local dos assuntos veterinários. Ratazanas macho Wistar (N=18, 236±11 g) foram submetidas a uma injeção icv de STZ (3 mg/kg) no caso do grupo infetado (N=10) ou de um buffer no caso do grupo de controlo (N=8). As ratazanas foram examinadas no scanner de IRM do tipo Varian de 14 T em quatro momentos no tempo: 2, 6, 13 e 21 semanas após a injeção. As imagens por difusão foram adquiridas com uma sequência semi-adiabática spin-echo EPI PGSE com os seguintes parâmetros: 4 (b=0), 12 (b=0.8 ms/μm2), 16 (b=1.3 ms/μm2) and 30 (b=2 ms/μm2) direções; TE/TR=48/2500 ms, 9 secções coronais de 1 mm, δ/Δ=4/27 ms, FOV=23x17 mm2, matriz=128x64 e 4 shots. O plano existente de processamento de imagem incluía a correção das imagens ao nível de ruído e correntes-eddy. Posteriormente, os tensores de difusão e curtose foram estimados para cada voxel e os mapas paramétricos de anisotropia fracional (FA), difusão média, axial e radial (MD, AD e RD) e cur-tose média, axial e radial (MK, AK e RK) foram calculados. Adicionalmente, um modelo de difusão de água nas fibras da matéria branca foi utilizado para providenciar maior especificidade ao estudo da microestrutura do cérebro. Como tal, o modelo de dois compartimentos denominado WMTI-Watson foi também estimado e as seguintes variáveis foram derivadas do mesmo: a fração do volume de água , a difusividade paralela intra-axonal , as difusividades paralela ,║ e perpendicular ,ꓕ extra-axonais e, finalmente, a orientação da dispersão axonal 2. Este modelo matemático tem duas soluções possíveis dada a sua natureza quadrática, pelo que a solução >,║ foi imposta com base em evidências re-centes. Considerando estudos anteriores, as regiões de interesse (RDIs) da matéria branca escolhidas para analisar a microestrutura cerebral foram o corpo caloso, o cíngulo, a fimbria e a fórnix. Estes foram automaticamente segmentados através de registo de imagem de um atlas das regiões do cérebro da rata-zana e as médias das medidas extraídas dos tensores de difusão e curtose e ainda do modelo biofísico neuronal foram calculadas em cada RDI para cada conjunto de imagens obtidas. Os dois grupos de teste e controlo foram comparados usando testes t de Student bilaterais em cada momento do tempo, e a comparação das alterações longitudinais em cada grupo foi feita usando uma ANOVA. Devido ao baixo número de amostras, o último momento no tempo às 21 semanas foi excluído da análise. No decorrer deste projeto, várias estratégias para otimizar o processamento de imagem ou comple-mentar a análise da informação disponível foram testadas. Nomeadamente, o atlas cerebral da ratazana foi aperfeiçoado relativamente às regiões de matéria branca, a segmentação do cérebro foi testada com algoritmos automáticos e a correção do bias field em imagens estruturais de IRM foi adicionada ao plano antes do registo de imagem. O aumento dos ventrículos cerebrais é uma característica frequente em animais icv-STZ, constituindo um problema de alinhamento nos métodos de registo de imagem. No sentido de otimizar a correspondência entre as regiões do atlas e as respetivas regiões na imagem estru-tural e por difusão, vários procedimentos de registo de imagem foram testados. O co-registo de imagem convencional utiliza imagens estruturais para normalizar o espaço das imagens por difusão, no entanto os mapas paramétricos de FA têm vindo a substituir este conceito dado o excelente contraste que provi-denciam entre a matéria branca e cinzenta do cérebro. Mapas de FA com diferentes direções predomi-nantes mostraram uma melhoria significante da segmentação do corpo caloso e da fimbria e também do poder estatístico das variáveis extraídas destas RDIs. Adicionalmente, um novo plano de processamento de tratografia foi construído de raiz no âmbito deste projeto para extrair variáveis adicionais das fibras de interesse e compará-las com as variáveis de difusão obtidas por análise voxel-a-voxel. Por último, as variáveis calculadas através dos tensores de difusão e curtose foram avaliadas na matéria cinzenta do cérebro para uma caracterização espácio-temporal da degeneração cerebral na DA. Os resultados da análise estatística foram obtidos após integrar no plano de processamento as estra-tégias que mostraram valorizar o projeto em termos de qualidade de imagem ou credibilidade das vari-áveis. Houve poucas diferenças significativas ao longo do tempo em cada grupo, no entanto as diferen-ças entre grupos foram bastante acentuadas. As alterações ao nível da microestrutura da matéria branca foram consistentes com estudos prévios em animais icv-STZ usando métodos histológicos e avaliações das suas capacidades cognitivas. Alterações nas variáveis extraídas dos tensores indicaram deficiência axonal inicial na fimbria e no fórnix 2 semanas após injeção no grupo de teste, um potencial período de recuperação às 6 semanas e novamente deficiência axonal às 13 semanas, sendo que neste período tardio todas as RDIs foram afetadas. O modelo biofísico WMTI-Watson confirmou aumentar especificidade ao estudo da microestrutura, visto que demostrou danos intra-axonais na fimbria e no corpo caloso 2 semanas após injeção, seguidos de um período de recuperação e de perda de estrutura axonal definitiva às 13 semanas em todas as RDIs. Não só estes dois métodos de análise de IRM de difusão se complementam, como são também con-sistentes entre eles e com as tendências de alterações ao longo do tempo descritas noutros estudos. Além disso, o animal icv-STZ mostrou alterações características da DA, mesmo tendo a degeneração cerebral sido induzida pela disrupção do metabolismo de glucose no cérebro. Como tal, este modelo animal é excelente para reproduzir a doença e deverá continuar a ser avaliado nas diferentes áreas multidiscipli-nares para explorar a hipótese de a DA ser desencadeada pela falha do sistema insulina/glucose. A com-binação da informação de difusão obtida dos tensores e da modelação da difusão neuronal provou ser uma ferramenta promissora no estudo das fibras da matéria branca do cérebro e poderá vir a ser o desafio futuro no que toca a investigação clínica da DA. Este estudo focar-se-á em correlacionar as alterações microestruturais aqui descritas com dados de conectividade funcional (obtida por IRM funcional em repouso), hipometabolismo de glucose (por FDG-PET) e outras características patológicas (por colora-ção histológica) – todos já em curso no CIBM. Tratografia é a metodologia topo de gama para aceder à conetividade cerebral e o plano de processamento gerado neste projeto poderá continuar a ser desenvol-vido no futuro para informação adicional, assim como a relação entre a matéria branca e cinzenta poderá suplementar a compreensão da progressão da doença no espaço e no tempo

    Analyse et reconstruction de faisceaux de la matière blanche

    Get PDF
    L'imagerie par résonance magnétique de diffusion (IRMd) est une modalité d'acquisition permettant de sonder les tissus biologiques et d'en extraire une variété d'informations sur le mouvement microscopique des molécules d'eau. Plus spécifiquement à l'imagerie médicale, l'IRMd permet l'investigation des structures fibreuses de nombreux organes et facilite la compréhension des processus cognitifs ou au diagnostic. Dans le domaine des neurosciences, l'IRMd est cruciale à l'exploration de la connectivité structurelle de la matière blanche. Cette thèse s'intéresse plus particulièrement à la reconstruction de faisceaux de la matière blanche ainsi qu'à leur analyse. Toute la complexité du traitement des données commençant au scanneur jusqu'à la création d'un tractogramme est extrêmement importante. Par contre, l'application spécifique de reconstruction des faisceaux anatomiques plausibles est ultimement le véritable défi de l'IRMd. L'optimisation des paramètres de la tractographie, le processus de segmentation manuelle ou automatique ainsi que l'interprétation des résultats liée à ces faisceaux sont toutes des étapes du processus avec leurs lots de difficultés

    Modeling Structural Brain Connectivity

    Get PDF
    corecore