212 research outputs found

    Running Genetic Algorithms in the Edge: A First Analysis

    Get PDF
    Nowadays, the volume of data produced by different kinds of devices is continuously growing, making even more difficult to solve the many optimization problems that impact directly on our living quality. For instance, Cisco projected that by 2019 the volume of data will reach 507.5 zettabytes per year, and the cloud traffic will quadruple. This is not sustainable in the long term, so it is a need to move part of the intelligence from the cloud to a highly decentralized computing model. Considering this, we propose a ubiquitous intelligent system which is composed by different kinds of endpoint devices such as smartphones, tablets, routers, wearables, and any other CPU powered device. We want to use this to solve tasks useful for smart cities. In this paper, we analyze if these devices are suitable for this purpose and how we have to adapt the optimization algorithms to be efficient using heterogeneous hardware. To do this, we perform a set of experiments in which we measure the speed, memory usage, and battery consumption of these devices for a set of binary and combinatorial problems. Our conclusions reveal the strong and weak features of each device to run future algorihms in the border of the cyber-physical system.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. This research has been partially funded by the Spanish MINECO and FEDER projects TIN2014-57341-R (http://moveon.lcc.uma.es), TIN2016-81766-REDT (http://cirti.es), TIN2017-88213-R (http://6city.lcc.uma.es), the Ministry of Education of Spain (FPU16/02595

    Sub-structural Niching in Estimation of Distribution Algorithms

    Full text link
    We propose a sub-structural niching method that fully exploits the problem decomposition capability of linkage-learning methods such as the estimation of distribution algorithms and concentrate on maintaining diversity at the sub-structural level. The proposed method consists of three key components: (1) Problem decomposition and sub-structure identification, (2) sub-structure fitness estimation, and (3) sub-structural niche preservation. The sub-structural niching method is compared to restricted tournament selection (RTS)--a niching method used in hierarchical Bayesian optimization algorithm--with special emphasis on sustained preservation of multiple global solutions of a class of boundedly-difficult, additively-separable multimodal problems. The results show that sub-structural niching successfully maintains multiple global optima over large number of generations and does so with significantly less population than RTS. Additionally, the market share of each of the niche is much closer to the expected level in sub-structural niching when compared to RTS

    Fitness sharing and niching methods revisited

    Get PDF
    Interest in multimodal optimization function is expanding rapidly since real-world optimization problems often require the location of multiple optima in the search space. In this context, fitness sharing has been used widely to maintain population diversity and permit the investigation of many peaks in the feasible domain. This paper reviews various strategies of sharing and proposes new recombination schemes to improve its efficiency. Some empirical results are presented for high and a limited number of fitness function evaluations. Finally, the study compares the sharing method with other niching techniques

    Evidence of coevolution in multi-objective evolutionary algorithms

    Get PDF
    This paper demonstrates that simple yet important characteristics of coevolution can occur in evolutionary algorithms when only a few conditions are met. We find that interaction-based fitness measurements such as fitness (linear) ranking allow for a form of coevolutionary dynamics that is observed when 1) changes are made in what solutions are able to interact during the ranking process and 2) evolution takes place in a multi-objective environment. This research contributes to the study of simulated evolution in a at least two ways. First, it establishes a broader relationship between coevolution and multi-objective optimization than has been previously considered in the literature. Second, it demonstrates that the preconditions for coevolutionary behavior are weaker than previously thought. In particular, our model indicates that direct cooperation or competition between species is not required for coevolution to take place. Moreover, our experiments provide evidence that environmental perturbations can drive coevolutionary processes; a conclusion that mirrors arguments put forth in dual phase evolution theory. In the discussion, we briefly consider how our results may shed light onto this and other recent theories of evolution

    When Hillclimbers Beat Genetic Algorithms in Multimodal Optimization

    Full text link
    It has been shown in the past that a multistart hillclimbing strategy compares favourably to a standard genetic algorithm with respect to solving instances of the multimodal problem generator. We extend that work and verify if the utilization of diversity preservation techniques in the genetic algorithm changes the outcome of the comparison. We do so under two scenarios: (1) when the goal is to find the global optimum, (2) when the goal is to find all optima. A mathematical analysis is performed for the multistart hillclimbing algorithm and a through empirical study is conducted for solving instances of the multimodal problem generator with increasing number of optima, both with the hillclimbing strategy as well as with genetic algorithms with niching. Although niching improves the performance of the genetic algorithm, it is still inferior to the multistart hillclimbing strategy on this class of problems. An idealized niching strategy is also presented and it is argued that its performance should be close to a lower bound of what any evolutionary algorithm can do on this class of problems

    Sensitivity Analysis of Checkpointing Strategies for Multimemetic Algorithms on Unstable Complex Networks

    Get PDF
    The use of volatile decentralized computational platforms such as, e.g., peer-to-peer networks, is becoming an increasingly popular option to gain access to vast computing resources. Making an effective use of these resources requires algorithms adapted to such a changing environment, being resilient to resource volatility. We consider the use of a variant of evolutionary algorithms endowed with a classical fault-tolerance technique, namely the creation of checkpoints in a safe external storage. We analyze the sensitivity of this approach on different kind of networks (scale-free and small-world) and under different volatility scenarios. We observe that while this strategy is robust under low volatility conditions, in cases of severe volatility performance degrades sharply unless a high checkpoint frequency is used. This suggest that other fault-tolerance strategies are required in these situations.Universidad de Málaga, Campus de Excelencia Internacional Andalucía Tech. This work is partially supported by the MINECO project EphemeCH (TIN2014-56494-C4-1-P), by the Junta de Andalucía project DNEMESIS (P10-TIC-6083
    corecore