2,194 research outputs found

    Massive MIMO has Unlimited Capacity

    Full text link
    The capacity of cellular networks can be improved by the unprecedented array gain and spatial multiplexing offered by Massive MIMO. Since its inception, the coherent interference caused by pilot contamination has been believed to create a finite capacity limit, as the number of antennas goes to infinity. In this paper, we prove that this is incorrect and an artifact from using simplistic channel models and suboptimal precoding/combining schemes. We show that with multicell MMSE precoding/combining and a tiny amount of spatial channel correlation or large-scale fading variations over the array, the capacity increases without bound as the number of antennas increases, even under pilot contamination. More precisely, the result holds when the channel covariance matrices of the contaminating users are asymptotically linearly independent, which is generally the case. If also the diagonals of the covariance matrices are linearly independent, it is sufficient to know these diagonals (and not the full covariance matrices) to achieve an unlimited asymptotic capacity.Comment: To appear in IEEE Transactions on Wireless Communications, 17 pages, 7 figure

    Fundamental Asymptotic Behavior of (Two-User) Distributed Massive MIMO

    Get PDF
    This paper considers the uplink of a distributed Massive MIMO network where NN base stations (BSs), each equipped with MM antennas, receive data from K=2K=2 users. We study the asymptotic spectral efficiency (as M→∞M\to \infty) with spatial correlated channels, pilot contamination, and different degrees of channel state information (CSI) and statistical knowledge at the BSs. By considering a two-user setup, we can simply derive fundamental asymptotic behaviors and provide novel insights into the structure of the optimal combining schemes. In line with [1], when global CSI is available at all BSs, the optimal minimum-mean squared error combining has an unbounded capacity as M→∞M\to \infty, if the global channel covariance matrices of the users are asymptotically linearly independent. This result is instrumental to derive a suboptimal combining scheme that provides unbounded capacity as M→∞M\to \infty using only local CSI and global channel statistics. The latter scheme is shown to outperform a generalized matched filter scheme, which also achieves asymptotic unbounded capacity by using only local CSI and global channel statistics, but is derived following [2] on the basis of a more conservative capacity bound.Comment: 6 pages, 2 figures, to be presented at GLOBECOM 2018, Abu Dhab

    Kronecker Product Correlation Model and Limited Feedback Codebook Design in a 3D Channel Model

    Full text link
    A 2D antenna array introduces a new level of control and additional degrees of freedom in multiple-input-multiple-output (MIMO) systems particularly for the so-called "massive MIMO" systems. To accurately assess the performance gains of these large arrays, existing azimuth-only channel models have been extended to handle 3D channels by modeling both the elevation and azimuth dimensions. In this paper, we study the channel correlation matrix of a generic ray-based 3D channel model, and our analysis and simulation results demonstrate that the 3D correlation matrix can be well approximated by a Kronecker production of azimuth and elevation correlations. This finding lays the theoretical support for the usage of a product codebook for reduced complexity feedback from the receiver to the transmitter. We also present the design of a product codebook based on Grassmannian line packing.Comment: 6 pages, 5 figures, to appear at IEEE ICC 201
    • …
    corecore