12 research outputs found

    Segmentation of Human Muscles of Mastication from Magnetic Resonance Images

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Effects of Noninhibitory Serpin Maspin on the Actin Cytoskeleton: A Quantitative Image Modeling Approach

    Get PDF
    Recent developments in quantitative image analysis allow us to interrogate confocal microscopy images to answer biological questions. Clumped and layered cell nuclei and cytoplasm in confocal images challenges the ability to identify subcellular compartments. To date, there is no perfect image analysis method to identify cytoskeletal changes in confocal images. Here, we present a multidisciplinary study where an image analysis model was developed to allow quantitative measurements of changes in the cytoskeleton of cells with different maspin exposure. Maspin, a noninhibitory serpin influences cell migration, adhesion, invasion, proliferation, and apoptosis in ways that are consistent with its identification as a tumor metastasis suppressor. Using different cell types, we tested the hypothesis that reduction in cell migration by maspin would be reflected in the architecture of the actin cytoskeleton. A hybrid marker-controlled watershed segmentation technique was used to segment the nuclei, cytoplasm, and ruffling regions before measuring cytoskeletal changes. This was informed by immunohistochemical staining of cells transfected stably or transiently with maspin proteins, or with added bioactive peptides or protein. Image analysis results showed that the effects of maspin were mirrored by effects on cell architecture, in a way that could be described quantitatively

    Introduction to Facial Micro Expressions Analysis Using Color and Depth Images: A Matlab Coding Approach (Second Edition, 2023)

    Full text link
    The book attempts to introduce a gentle introduction to the field of Facial Micro Expressions Recognition (FMER) using Color and Depth images, with the aid of MATLAB programming environment. FMER is a subset of image processing and it is a multidisciplinary topic to analysis. So, it requires familiarity with other topics of Artifactual Intelligence (AI) such as machine learning, digital image processing, psychology and more. So, it is a great opportunity to write a book which covers all of these topics for beginner to professional readers in the field of AI and even without having background of AI. Our goal is to provide a standalone introduction in the field of MFER analysis in the form of theorical descriptions for readers with no background in image processing with reproducible Matlab practical examples. Also, we describe any basic definitions for FMER analysis and MATLAB library which is used in the text, that helps final reader to apply the experiments in the real-world applications. We believe that this book is suitable for students, researchers, and professionals alike, who need to develop practical skills, along with a basic understanding of the field. We expect that, after reading this book, the reader feels comfortable with different key stages such as color and depth image processing, color and depth image representation, classification, machine learning, facial micro-expressions recognition, feature extraction and dimensionality reduction. The book attempts to introduce a gentle introduction to the field of Facial Micro Expressions Recognition (FMER) using Color and Depth images, with the aid of MATLAB programming environment.Comment: This is the second edition of the boo

    An Improved Active Contour Model for Medical Images Segmentation

    Get PDF

    Modelling the head and neck region for microwave imaging of cervical lymph nodes

    Get PDF
    Tese de mestrado integrado, Engenharia Biomédica e Biofísica (Radiações em Diagnóstico e Terapia), Universidade de Lisboa, Faculdade de Ciências, 2020O termo “cancro da cabeça e pescoço” refere-se a um qualquer tipo de cancro com início nas células epiteliais das cavidades oral e nasal, seios perinasais, glândulas salivares, faringe e laringe. Estes tumores malignos apresentaram, em 2018, uma incidência mundial de cerca de 887.659 novos casos e taxa de mortalidade superior a 51%. Aproximadamente 80% dos novos casos diagnosticados nesse ano revelaram a proliferação de células cancerígenas dos tumores para outras regiões do corpo através dos vasos sanguíneos e linfáticos das redondezas. De forma a determinar o estado de desenvolvimento do cancro e as terapias a serem seguidas, é fundamental a avaliação dos primeiros gânglios linfáticos que recebem a drenagem do tumor primário – os gânglios sentinela – e que, por isso, apresentam maior probabilidade de se tornarem os primeiros alvos das células tumorais. Gânglios sentinela saudáveis implicam uma menor probabilidade de surgirem metástases, isto é, novos focos tumorais decorrentes da disseminação do cancro para outros órgãos. O procedimento standard que permite o diagnóstico dos gânglios linfáticos cervicais, gânglios que se encontram na região da cabeça e pescoço, e o estadiamento do cancro consiste na remoção cirúrgica destes gânglios e subsequente histopatologia. Para além de ser um procedimento invasivo, a excisão cirúrgica dos gânglios linfáticos representa perigos tanto para a saúde mental e física dos pacientes, como para a sua qualidade de vida. Dores, aparência física deformada (devido a cicatrizes), perda da fala ou da capacidade de deglutição são algumas das repercussões que poderão advir da remoção de gânglios linfáticos da região da cabeça e pescoço. Adicionalmente, o risco de infeção e linfedema – acumulação de linfa nos tecidos intersticiais – aumenta significativamente com a remoção de uma grande quantidade de gânglios linfáticos saudáveis. Também os encargos para os sistemas de saúde são elevados devido à necessidade de monitorização destes pacientes e subsequentes terapias e cuidados associados à morbilidade, como é o caso da drenagem linfática manual e da fisioterapia. O desenvolvimento de novas tecnologias de imagem da cabeça e pescoço requer o uso de modelos realistas que simulem o comportamento e propriedades dos tecidos biológicos. A imagem médica por micro-ondas é uma técnica promissora e não invasiva que utiliza radiação não ionizante, isto é, sinais com frequências na gama das micro-ondas cujo comportamento depende do contraste dielétrico entre os diferentes tecidos atravessados, pelo que é possível identificar regiões ou estruturas de interesse e, consequentemente, complementar o diagnóstico. No entanto, devido às suas características, este tipo de modalidade apenas poderá ser utilizado para a avaliação de regiões anatómicas pouco profundas. Estudos indicam que os gânglios linfáticos com células tumorais possuem propriedades dielétricas distintas dos gânglios linfáticos saudáveis. Por esta razão e juntamente pelo facto da sua localização pouco profunda, consideramos que os gânglios linfáticos da região da cabeça e pescoço constituem um excelente candidato para a utilização de imagem médica por radar na frequência das micro-ondas como ferramenta de diagnóstico. Até à data, não foram efetuados estudos de desenvolvimento de modelos da região da cabeça e pescoço focados em representar realisticamente os gânglios linfáticos cervicais. Por este motivo, este projeto consistiu no desenvolvimento de dois geradores de fantomas tridimensionais da região da cabeça e pescoço – um gerador de fantomas numéricos simples (gerador I) e um gerador de fantomas numéricos mais complexos e anatomicamente realistas, que foi derivado de imagens de ressonância magnética e que inclui as propriedades dielétricas realistas dos tecidos biológicos (gerador II). Ambos os geradores permitem obter fantomas com diferentes níveis de complexidade e assim acompanhar diferentes fases no processo de desenvolvimento de equipamentos médicos de imagiologia por micro-ondas. Todos os fantomas gerados, e principalmente os fantomas anatomicamente realistas, poderão ser mais tarde impressos a três dimensões. O processo de construção do gerador I compreendeu a modelação da região da cabeça e pescoço em concordância com a anatomia humana e distribuição dos principais tecidos, e a criação de uma interface para a personalização dos modelos (por exemplo, a inclusão ou remoção de alguns tecidos é dependente do propósito para o qual cada modelo é gerado). O estudo minucioso desta região levou à inclusão de tecidos ósseos, musculares e adiposos, pele e gânglios linfáticos nos modelos. Apesar destes fantomas serem bastante simples, são essenciais para o início do processo de desenvolvimento de dispositivos de imagem médica por micro-ondas dedicados ao diagnóstico dos gânglios linfáticos cervicais. O processo de construção do gerador II foi fracionado em 3 grandes etapas devido ao seu elevado grau de complexidade. A primeira etapa consistiu na criação de uma pipeline que permitiu o processamento das imagens de ressonância magnética. Esta pipeline incluiu: a normalização dos dados, a subtração do background com recurso a máscaras binárias manualmente construídas, o tratamento das imagens através do uso de filtros lineares (como por exemplo, filtros passa-baixo ideal, Gaussiano e Butterworth) e não-lineares (por exemplo, o filtro mediana), e o uso de algoritmos não supervisionados de machine learning para a segmentação dos vários tecidos biológicos presentes na região cervical, tais como o K-means, Agglomerative Hierarchical Clustering, DBSCAN e BIRCH. Visto que cada algoritmo não supervisionado de machine learning anteriormente referido requer diferentes hiperparâmetros, é necessário proceder a um estudo pormenorizado que permita a compreensão do modo de funcionamento de cada algoritmo individualmente e a sua interação / performance com o tipo de dados tratados neste projeto (isto é, dados de exames de ressonâncias magnéticas) com vista a escolher empiricamente o leque de valores de cada hiperparâmetro que deve ser considerado, e ainda as combinações que devem ser testadas. Após esta fase, segue-se a avaliação da combinação de hiperparâmetros que resulta na melhor segmentação das estruturas anatómicas. Para esta avaliação são consideradas duas metodologias que foram combinadas: a utilização de métricas que permitam avaliar a qualidade do clustering (como por exemplo, o Silhoeutte Coefficient, o índice de Davies-Bouldin e o índice de Calinski-Harabasz) e ainda a inspeção visual. A segunda etapa foi dedicada à introdução manual de algumas estruturas, como a pele e os gânglios linfáticos, que não foram segmentadas pelos algoritmos de machine learning devido à sua fina espessura e pequena dimensão, respetivamente. Finalmente, a última etapa consistiu na atribuição das propriedades dielétricas, para uma frequência pré-definida, aos tecidos biológicos através do Modelo de Cole-Cole de quatro pólos. Tal como no gerador I, foi criada uma interface que permitiu ao utilizador decidir que características pretende incluir no fantoma, tais como: os tecidos a incluir (tecido adiposo, tecido muscular, pele e / ou gânglios linfáticos), relativamente aos gânglios linfáticos o utilizador poderá ainda determinar o seu número, dimensões, localização em níveis e estado clínico (saudável ou metastizado) e finalmente, o valor de frequência para o qual pretende obter as propriedades dielétricas (permitividade relativa e condutividade) de cada tecido biológico. Este projeto resultou no desenvolvimento de um gerador de modelos realistas da região da cabeça e pescoço com foco nos gânglios linfáticos cervicais, que permite a inserção de tecidos biológicos, tais como o tecidos muscular e adiposo, pele e gânglios linfáticos e aos quais atribui as propriedades dielétricas para uma determinada frequência na gama de micro-ondas. Estes modelos computacionais resultantes do gerador II, e que poderão ser mais tarde impressos em 3D, podem vir a ter grande impacto no processo de desenvolvimento de dispositivos médicos de imagem por micro-ondas que visam diagnosticar gânglios linfáticos cervicais, e consequentemente, contribuir para um processo não invasivo de estadiamento do cancro da cabeça e pescoço.Head and neck cancer is a broad term referring to any epithelial malignancies arising in the paranasal sinuses, nasal and oral cavities, salivary glands, pharynx, and larynx. In 2018, approximately 80% of the newly diagnosed head and neck cancer cases resulted in tumour cells spreading to neighbouring lymph and blood vessels. In order to determine cancer staging and decide which follow-up exams and therapy to follow, physicians excise and assess the Lymph Nodes (LNs) closest to the primary site of the head and neck tumour – the sentinel nodes – which are the ones with highest probability of being targeted by cancer cells. The standard procedure to diagnose the Cervical Lymph Nodes (CLNs), i.e. lymph nodes within the head and neck region, and determine the cancer staging frequently involves their surgical removal and subsequent histopathology. Besides being invasive, the removal of the lymph nodes also has negative impact on patients’ quality of life, it can be health threatening, and it is costly to healthcare systems due to the patients’ needs for follow-up treatments/cares. Anatomically realistic phantoms are required to develop novel technologies tailored to image head and neck regions. Medical MicroWave Imaging (MWI) is a promising non-invasive approach which uses non-ionizing radiation to screen shallow body regions, therefore cervical lymph nodes are excellent candidates to this imaging modality. In this project, a three-dimensional (3D) numerical phantom generator (generator I) and a Magnetic Resonance Imaging (MRI)-derived anthropomorphic phantom generator (generator II) of the head and neck region were developed to create phantoms with different levels of complexity and realism, which can be later 3D printed to test medical MWI devices. The process of designing the numerical phantom generator included the modelling of the head and neck regions according to their anatomy and the distribution of their main tissues, and the creation of an interface which allowed the users to personalise the model (e.g. include or remove certain tissues, depending on the purpose of each generated model). To build the anthropomorphic phantom generator, the modelling process included the creation of a pipeline of data processing steps to be applied to MRIs of the head and neck, followed by the development of algorithms to introduce additional tissues to the models, such as skin and lymph nodes, and finally, the assignment of the dielectric properties to the biological tissues. Similarly, this generator allowed users to decide the features they wish to include in the phantoms. This project resulted in the creation of a generator of 3D anatomically realistic head and neck phantoms which allows the inclusion of biological tissues such as skin, muscle tissue, adipose tissue, and LNs, and assigns state-of-the-art dielectric properties to the tissues. These phantoms may have a great impact in the development process of MWI devices aimed at screening and diagnosing CLNs, and consequently, contribute to a non-invasive staging of the head and neck cancer

    Artificial Intelligence in Oral Health

    Get PDF
    This Special Issue is intended to lay the foundation of AI applications focusing on oral health, including general dentistry, periodontology, implantology, oral surgery, oral radiology, orthodontics, and prosthodontics, among others

    Development of procedures for the design, optimization and manufacturing of customized orthopaedic and trauma implants: Geometrical/anatomical modelling from 3D medical imaging

    Get PDF
    Tese de Doutoramento (Programa Doutoral em Engenharia Biomédica)The introduction of imaging techniques in 1970 is one of the most relevant historical milestones in modern medicine. Medical imaging techniques have dramatically changed our understanding of the Human anatomy and physiology. The ability to non-invasively extract visual information allowed, not only the three-dimensional representation of the internal organs and musculo-skeletal system, but also the simulation of surgical procedures, the execution of computer aided surgeries, the development of more accurate biomechanical models, the development of custom-made implants, among others. The combination of the most advanced medical imaging systems with the most advanced CAD and CAM techniques, may allow the development of custom-made implants that meet patient-speci c traits. The geometrical and functional optimization of these devices may increase implant life-expectancy, especially in patients with marked deviations from the anatomical standards. In the implant customization protocol from medical image data, there are several steps that need to be followed in a sequential way, namely: Medical Image Processing and Recovering; Accurate Image Segmentation and 3D Surface Model Generation; Geometrical Customization based on CAD and CAE techniques; FEA Optimization of the Implant Geometry; and Manufacturing using CAD-CAM Technologies. This work aims to develop the necessary procedures for custom implant development from medical image data. This includes the extraction of highly accurate three-dimensional representation of the musculo-skeletal system from the Computed Tomography imaging, and the development of customized implants, given the speci c requirements of the target anatomy, and the applicable best practices found in the literature. A two-step segmentation protocol is proposed. In the rst step the region of interest is pre-segmented in order to obtain a good approximation to the desired geometry. Next, a fully automatic segmentation re nement is applied to obtain a more accurate representation of the target domain. The re nement step is composed by several sub-steps, more precisely, the recovery of the original image, considering the limiting resolution of the imaging system; image cropping; image interpolation; and segmentation re nement over the up-sampled domain. Highly accurate segmentations of the target domain were obtained with the proposed pipeline. The limiting factor to the accurate description of the domain accuracy is the image acquisition process, rather the following image processing, segmentation and surface meshing steps. The new segmentation pipeline was used in the development of three tailor-made implants, namely, a tibial nailing system, a mandibular implant, and a Total Hip Replacement system. Implants optimization is carried with Finite Element Analysis, considering the critical loading conditions that may be applied to each implant in working conditions. The new tibial nailing system is able of sustaining critical loads without implant failure; the new mandibular endoprosthesis that allows the recovery of the natural stress and strain elds observed in intact mandibles; and the Total Hip Replacement system that showed comparable strain shielding levels as commercially available stems. In summary, in the present thesis the necessary procedures for custom implant design are investigated, and new algorithms proposed. The guidelines for the characterization of the image acquisition, image processing, image segmentation and 3D reconstruction are presented and discussed. This new image processing pipeline is applied and validated in the development of the three abovementioned customized implants, for di erent medical applications and that satisfy speci c anatomical needs.Um dos principais marcos da história moderna da medicina e a introdução da imagem médica, em meados da década de 1970. As tecnologias de imagem permitiram aumentar e potenciar o nosso conhecimento acerca da anatomia e fisiologia do corpo Humano. A capacidade de obter informação imagiológica de forma não invasiva permitiu, não são a representação tridimensional de órgãos e do sistema músculo-esquelético, mas também a simulação de procedimentos cirúrgicos, a realização de cirurgias assistidas por computador, a criação de modelos biomecânicos mais realistas, a criação de implantes personalizados, entre outros. A conjugação dos sistemas mais avançados de imagem medica com as técnicas mais avançadas de modelação e maquinagem, pode permitir o desenvolvimento de implantes personalizados mais otimizados, que vão de encontro as especificidades de cada paciente. Por sua vez, a otimização geométrica e biomecânica destes dispositivos pode permitir, quer o aumento da sua longevidade, quer o tratamento de pessoas com estruturas anatómicas que se afastam dos padrões normais. O processo de modelação de implantes a partir da imagem medica passa por um conjunto de procedimentos a adotar, sequencialmente, ate ao produto final, a saber: Processamento e Recuperação de Imagem; Segmentação de Imagem e Reconstrução tridimensional da Região de Interesse; Modelação Geométrica do Implante; Simulação Numérica para a Otimização da Geometria; a Maquinagem do Implante. Este trabalho visa o desenvolvimento dos procedimentos necessários para a criação de implantes personalizados a partir da imagem medica, englobando a extração de modelos ósseos geométricos rigorosos a partir de imagens de Tomografia Computorizada e, a partir desses modelos, desenvolver implantes personalizados baseados nas melhores praticas existentes na literatura e que satisfaçam as especificidades da anatomia do paciente. Assim, apresenta-se e discute-se um novo procedimento de segmentação em dois passos. No primeiro e feita uma pre-segmentação que visa obter uma aproximação iniciala região de interesse. De seguida, um procedimento de refinamento da segmentação totalmente automático e aplicada a segmentação inicial para obter uma descrição mais precisa do domínio de interesse. O processo de refinamento da segmentação e constituído por vários procedimentos, designadamente: recuperação da imagem original, tendo em consideração a resolução limitante do sistema de imagem; o recorte da imagem na vizinhança da região pre-segmentada; a interpolação da região de interesse; e o refinamento da segmentação aplicando a técnica de segmentação Level-Sets sobre o domínio interpolado. O procedimento de segmentação permitiu extrair modelos extremamente precisos a partir da informação imagiológica. Os resultados revelam que o fator limitante a descrição do domínio e o processo de aquisição de imagem, em detrimento dos diversos passos de processamento subsequentes. O novo protocolo de segmentação foi utilizado no desenvolvimento de três implantes personalizados, a saber: um sistema de fixação interna para a tíbia; um implante mandibular; e um sistema para a Reconstrução Total da articulação da Anca. A otimização do comportamento mecânico dos implantes foi feita utilizado o Método dos Elementos Finitos, tendo em conta os carregamentos críticos a que estes podem estar sujeitos durante a sua vida útil. O sistema de fixação interna para a tíbia e capaz de suportar os carregamentos críticos, sem que a sua integridade mecânica seja comprometida; o implante mandibular permite recuperar os campos de tensão e deformação observados em mandíbulas intactas; e a Prótese Total da Anca apresenta níveis de strain shielding ao longo do fémur proximal comparáveis com os níveis observados em dispositivos comercialmente disponíveis. Em suma, nesta tese de Doutoramento são investigados e propostos novos procedimentos para o projeto de implantes feitos por medida. São apresentadas e discutidas as linhas orientadoras para a caracterização precisa do sistema de aquisição de imagem, para o processamento de imagem, para a segmentação, e para a reconstrução 3D das estruturas anatómicas a partir da imagem medica. Este conjunto de linhas orientadoras é aplicado e validado no desenvolvimento de três implantes personalizados, citados anteriormente, para aplicações médicas distintas e que satisfazem as necessidades anatómicas específicas de cada paciente.Fundação para a Ciência e Tecnologia (FCT

    Computed-Tomography (CT) Scan

    Get PDF
    A computed tomography (CT) scan uses X-rays and a computer to create detailed images of the inside of the body. CT scanners measure, versus different angles, X-ray attenuations when passing through different tissues inside the body through rotation of both X-ray tube and a row of X-ray detectors placed in the gantry. These measurements are then processed using computer algorithms to reconstruct tomographic (cross-sectional) images. CT can produce detailed images of many structures inside the body, including the internal organs, blood vessels, and bones. This book presents a comprehensive overview of CT scanning. Chapters address such topics as instrumental basics, CT imaging in coronavirus, radiation and risk assessment in chest imaging, positron emission tomography (PET), and feature extraction
    corecore