346 research outputs found

    Contributions to Positioning Methods on Low-Cost Devices

    Get PDF
    Global Navigation Satellite System (GNSS) receivers are common in modern consumer devices that make use of position information, e.g., smartphones and personal navigation assistants. With a GNSS receiver, a position solution with an accuracy in the order of five meters is usually available if the reception conditions are benign, but the performance degrades rapidly in less favorable environments and, on the other hand, a better accuracy would be beneficial in some applications. This thesis studies advanced methods for processing the measurements of low-cost devices that can be used for improving the positioning performance. The focus is on GNSS receivers and microelectromechanical (MEMS) inertial sensors which have become common in mobile devices such as smartphones. First, methods to compensate for the additive bias of a MEMS gyroscope are investigated. Both physical slewing of the sensor and mathematical modeling of the bias instability process are considered. The use of MEMS inertial sensors for pedestrian navigation indoors is studied in the context of map matching using a particle filter. A high-sensitivity GNSS receiver is used to produce coarse initialization information for the filter to decrease the computational burden without the need to exploit local building infrastructure. Finally, a cycle slip detection scheme for stand-alone single-frequency GNSS receivers is proposed. Experimental results show that even a MEMS gyroscope can reach an accuracy suitable for North seeking if the measurement errors are carefully modeled and eliminated. Furthermore, it is seen that even a relatively coarse initialization can be adequate for long-term indoor navigation without an excessive computational burden if a detailed map is available. The cycle slip detection results suggest that even small cycle slips can be detected with mass-market GNSS receivers, but the detection rate needs to be improved

    Long Range Automated Persistent Surveillance

    Get PDF
    This dissertation addresses long range automated persistent surveillance with focus on three topics: sensor planning, size preserving tracking, and high magnification imaging. field of view should be reserved so that camera handoff can be executed successfully before the object of interest becomes unidentifiable or untraceable. We design a sensor planning algorithm that not only maximizes coverage but also ensures uniform and sufficient overlapped camera’s field of view for an optimal handoff success rate. This algorithm works for environments with multiple dynamic targets using different types of cameras. Significantly improved handoff success rates are illustrated via experiments using floor plans of various scales. Size preserving tracking automatically adjusts the camera’s zoom for a consistent view of the object of interest. Target scale estimation is carried out based on the paraperspective projection model which compensates for the center offset and considers system latency and tracking errors. A computationally efficient foreground segmentation strategy, 3D affine shapes, is proposed. The 3D affine shapes feature direct and real-time implementation and improved flexibility in accommodating the target’s 3D motion, including off-plane rotations. The effectiveness of the scale estimation and foreground segmentation algorithms is validated via both offline and real-time tracking of pedestrians at various resolution levels. Face image quality assessment and enhancement compensate for the performance degradations in face recognition rates caused by high system magnifications and long observation distances. A class of adaptive sharpness measures is proposed to evaluate and predict this degradation. A wavelet based enhancement algorithm with automated frame selection is developed and proves efficient by a considerably elevated face recognition rate for severely blurred long range face images

    Hybrid and Cooperative Positioning Solutions for Wireless Networks

    Get PDF
    In this thesis, some hybrid and cooperative solutions are proposed and analyzed to locate the user in challenged scenarios, with the aim to overcome the limits of positioning systems based on single technology. The proposed approaches add hybrid and cooperative features to some conventional position estimation techniques like Kalman filter and particle filter, and fuse information from different radio frequency technologies. The concept of cooperative positioning is enhanced with hybrid technologies, in order to further increase the positioning accuracy and availability. In particular, wireless sensor networks and radio frequency identification technology are used together to enhance the collected data with position information. Terrestrial ranging techniques (i.e., ultra-wide band technology) are employed to assist the satellite-based localization in urban canyons and indoors. Moreover, some advanced positioning algorithms, such as energy efficient, cognitive tracking and non-line-of-sight identification, are studied to satisfy the different positioning requirements in harsh indoor environments. The proposed hybrid and cooperative solutions are tested and verified by first Monte Carlo simulations then real experiments. The obtained results demonstrate that the proposed solutions can increase the robustness (positioning accuracy and availability) of the current localization system

    Map-based localization for urban service mobile robotics

    Get PDF
    Mobile robotics research is currently interested on exporting autonomous navigation results achieved in indoor environments, to more challenging environments, such as, for instance, urban pedestrian areas. Developing mobile robots with autonomous navigation capabilities in such urban environments supposes a basic requirement for a upperlevel service set that could be provided to an users community. However, exporting indoor techniques to outdoor urban pedestrian scenarios is not evident due to the larger size of the environment, the dynamism of the scene due to pedestrians and other moving obstacles, the sunlight conditions, and the high presence of three dimensional elements such as ramps, steps, curbs or holes. Moreover, GPS-based mobile robot localization has demonstrated insufficient performance for robust long-term navigation in urban environments. One of the key modules within autonomous navigation is localization. If localization supposes an a priori map, even if it is not a complete model of the environment, localization is called map-based. This assumption is realistic since current trends of city councils are on building precise maps of their cities, specially of the most interesting places such as city downtowns. Having robots localized within a map allows for a high-level planning and monitoring, so that robots can achieve goal points expressed on the map, by following in a deliberative way a previously planned route. This thesis deals with the mobile robot map-based localization issue in urban pedestrian areas. The thesis approach uses the particle filter algorithm, a well-known and widely used probabilistic and recursive method for data fusion and state estimation. The main contributions of the thesis are divided on four aspects: (1) long-term experiments of mobile robot 2D and 3D position tracking in real urban pedestrian scenarios within a full autonomous navigation framework, (2) developing a fast and accurate technique to compute on-line range observation models in 3D environments, a basic step required by the real-time performance of the developed particle filter, (3) formulation of a particle filter that integrates asynchronous data streams and (4) a theoretical proposal to solve the global localization problem in an active and cooperative way, defining cooperation as either information sharing among the robots or planning joint actions to solve a common goal.Actualment, la recerca en robòtica mòbil té un interés creixent en exportar els resultats de navegació autònoma aconseguits en entorns interiors cap a d'altres tipus d'entorns més exigents, com, per exemple, les àrees urbanes peatonals. Desenvolupar capacitats de navegació autònoma en aquests entorns urbans és un requisit bàsic per poder proporcionar un conjunt de serveis de més alt nivell a una comunitat d'usuaris. Malgrat tot, exportar les tècniques d'interiors cap a entorns exteriors peatonals no és evident, a causa de la major dimensió de l'entorn, del dinamisme de l'escena provocada pels peatons i per altres obstacles en moviment, de la resposta de certs sensors a la il.luminació natural, i de la constant presència d'elements tridimensionals tals com rampes, escales, voreres o forats. D'altra banda, la localització de robots mòbils basada en GPS ha demostrat uns resultats insuficients de cara a una navegació robusta i de llarga durada en entorns urbans. Una de les peces clau en la navegació autònoma és la localització. En el cas que la localització consideri un mapa conegut a priori, encara que no sigui un model complet de l'entorn, parlem d'una localització basada en un mapa. Aquesta assumpció és realista ja que la tendència actual de les administracions locals és de construir mapes precisos de les ciutats, especialment dels llocs d'interés tals com les zones més cèntriques. El fet de tenir els robots localitzats en un mapa permet una planificació i una monitorització d'alt nivell, i així els robots poden arribar a destinacions indicades sobre el mapa, tot seguint de forma deliberativa una ruta prèviament planificada. Aquesta tesi tracta el tema de la localització de robots mòbils, basada en un mapa i per entorns urbans peatonals. La proposta de la tesi utilitza el filtre de partícules, un mètode probabilístic i recursiu, ben conegut i àmpliament utilitzat per la fusió de dades i l'estimació d'estats. Les principals contribucions de la tesi queden dividides en quatre aspectes: (1) experimentació de llarga durada del seguiment de la posició, tant en 2D com en 3D, d'un robot mòbil en entorns urbans reals, en el context de la navegació autònoma, (2) desenvolupament d'una tècnica ràpida i precisa per calcular en temps d'execució els models d'observació de distàncies en entorns 3D, un requisit bàsic pel rendiment del filtre de partícules a temps real, (3) formulació d'un filtre de partícules que integra conjunts de dades asíncrones i (4) proposta teòrica per solucionar la localització global d'una manera activa i cooperativa, entenent la cooperació com el fet de compartir informació, o bé com el de planificar accions conjuntes per solucionar un objectiu comú
    corecore