12,529 research outputs found

    The Ellipticity and Orientation of Clusters of Galaxies from N-Body Experiments

    Get PDF
    In this study we use simulations of 1283^3 particles to study the ellipticity and orientation of clusters of galaxies in N-body simulations of differing power-law initial spectra (P(k) \propto k^n ,n = +1, 0, -1, -2),anddensityparameters(), and density parameters (\Omega_0 = 0.2to1.0).Furthermore,unlikemosttheoreticalstudieswemimicmostobserversbyremovingallparticleswhichlieatdistancesgreaterthan21/hMpcfromtheclustercenterofmass.Wecomputedtheaxialratioandtheprincipalaxesusingtheinertiatensorofeachcluster.Themeanellipticityofclustersincreasesstronglywithincreasing to 1.0). Furthermore, unlike most theoretical studies we mimic most observers by removing all particles which lie at distances greater than 2 1/h Mpc from the cluster center of mass. We computed the axial ratio and the principal axes using the inertia tensor of each cluster. The mean ellipticity of clusters increases strongly with increasing n.Wealsofindthatclusterstendtobecomemoresphericalatsmallerradii.Wecomparedtheorientationofaclustertotheorientationofneighboringclustersasafunctionofdistance(correlation).Inaddition,weconsideredwhetheraclusterâ€Čsmajoraxistendstoliealongthelineconnectingittoaneighboringcluster,asafunctionofdistance(alignment).Bothalignmentsandcorrelationswerecomputedinthreedimensionsandinprojectiontomimicobservationalsurveys.Ourresultsshowthatsignificantalignmentsexistforallspectraatsmallseparations(. We also find that clusters tend to become more spherical at smaller radii. We compared the orientation of a cluster to the orientation of neighboring clusters as a function of distance (correlation). In addition, we considered whether a cluster's major axis tends to lie along the line connecting it to a neighboring cluster, as a function of distance (alignment). Both alignments and correlations were computed in three dimensions and in projection to mimic observational surveys. Our results show that significant alignments exist for all spectra at small separations (D < 15 h^{-1}Mpc)butdropsoffatlargerdistanceinastrongly Mpc) but drops off at larger distance in a strongly n-$dependent way.Comment: 22 pages, requires aaspp4.sty, flushrt.sty, and epsf.sty Revised manuscript, accepted for publication in Ap

    The Alignment of Clusters using Large Scale Simulations

    Get PDF
    The alignment of clusters of galaxies with their nearest neighbours and between clusters within a supercluster is investigated using simulations of 512^{3} dark matter particles for \LambdaCDM and \tauCDM cosmological models. Strongly significant alignments are found for separations of up to 15h^{-1}Mpc in both cosmologies, but for the \LambdaCDM model the alignments extend up to separations of 30h^{-1}Mpc. The effect is strongest for nearest neighbours, but is not significant enough to be useful as an observational discriminant between cosmologies. As a check of whether this difference in alignments is present in other cosmologies, smaller simulations with 256^{3} particles are investigated for 4 different cosmological models. Because of poor number statistics, only the standard CDM model shows indications of having different alignments from the other models.Comment: 6 pages, 5 figures Submitted to MNRA

    Intrinsic alignments in the cross-correlation of cosmic shear and CMB weak lensing

    Full text link
    We demonstrate that the intrinsic alignment of galaxies with large-scale tidal fields sources an extra contribution to the recently-detected cross-correlation of galaxy shear and weak lensing of the microwave background. The extra term is the analogy of the 'GI' term in standard cosmic shear studies, and results in a reduction in the amplitude of the cross-correlation. We compute the intrinsic alignment contribution in linear and non-linear theory, and show that it can be at roughly the 15% level for the CFHT Stripe 82 redshift distribution, if the canonical amplitude of intrinsic alignments is assumed. The new term can therefore potentially reconcile the apparently low value of the measured cross-correlation with standard LCDM. We discuss various small-scale effects in the signal and the dependence on the source redshift distribution. We discuss the exciting possibility of self-calibrating intrinsic alignments with a joint analysis of cosmic shear and weak lensing of the microwave backgroundComment: 5 pages, 4 figures; Published by MNRAS Letters. Minor corrections to match the published versio

    Analysis of Clumps in Molecular Cloud Models: Mass Spectrum, Shapes, Alignment and Rotation

    Full text link
    Observations reveal concentrations of molecular line emission on the sky, called ``clumps,'' in dense, star-forming molecular clouds. These clumps are believed to be the eventual sites of star formation. We study the three-dimensional analogs of clumps using a set of self-consistent, time-dependent numerical models of molecular clouds. The models follow the decay of initially supersonic turbulence in an isothermal, self-gravitating, magnetized fluid. We find the following. (1) Clumps are intrinsically triaxial. This explains the observed deficit of clumps with a projected axis ratio near unity, and the apparent prolateness of clumps. (2) Simulated clump axes are not strongly aligned with the mean magnetic field within clumps, nor with the large-scale mean fields. This is in agreement with observations. (3) The clump mass spectrum has a high-mass slope that is consistent with the Salpeter value. There is a low-mass break in the slope at \sim 0.5 \msun, although this may depend on model parameters including numerical resolution. (4) The typical specific spin angular momentum of clumps is 4×1022cm2s−14 \times 10^{22} {\rm cm^2 s^{-1}}. This is larger than the median specific angular momentum of binary stars. Scaling arguments suggest that higher resolution simulations may soon be able to resolve the scales at which the angular momentum of binary stars is determined.Comment: 14 pages, 13 figures, to appear in 2003 July 20 Ap

    Galaxy alignments: Observations and impact on cosmology

    Full text link
    Galaxy shapes are not randomly oriented, rather they are statistically aligned in a way that can depend on formation environment, history and galaxy type. Studying the alignment of galaxies can therefore deliver important information about the physics of galaxy formation and evolution as well as the growth of structure in the Universe. In this review paper we summarise key measurements of galaxy alignments, divided by galaxy type, scale and environment. We also cover the statistics and formalism necessary to understand the observations in the literature. With the emergence of weak gravitational lensing as a precision probe of cosmology, galaxy alignments have taken on an added importance because they can mimic cosmic shear, the effect of gravitational lensing by large-scale structure on observed galaxy shapes. This makes galaxy alignments, commonly referred to as intrinsic alignments, an important systematic effect in weak lensing studies. We quantify the impact of intrinsic alignments on cosmic shear surveys and finish by reviewing practical mitigation techniques which attempt to remove contamination by intrinsic alignments.Comment: 52 pages excl. references, 16 figures; minor changes to match version published in Space Science Reviews; part of a topical volume on galaxy alignments, with companion papers arXiv:1504.05456 and arXiv:1504.0554
    • 

    corecore