194 research outputs found

    Contralateral asymmetry for breast cancer detection : A CADx approach

    Get PDF
    Early detection is fundamental for the effective treatment of breast cancer and the screening mammography is the most common tool used by the medical community to detect early breast cancer development. Screening mammograms include images of both breasts using two standard views, and the contralateral asymmetry per view is a key feature in detecting breast cancer. we propose a methodology to incorporate said asymmetry information into a computer-aided diagnosis system that can accurately discern between healthy subjects and subjects at risk of having breast cancer. Furthermore, we generate features that measure not only a view-wise asymmetry, but a subject-wise one. BrieïŹ‚y, the methodology co-registers the left and right mammograms, extracts image characteristics, fuses them into subjectwise features, and classiïŹes subjects. In this study, 152 subjects from two independent databases, one with analog- and one with digital mammograms, were used to validate the methodology. Areas under the receiver operating characteristic curve of 0.738 and 0.767, and diagnostic odds ratios of 23.10 and 9.00 were achieved, respectively. In addition, the proposed method has the potential to rank subjects by their probability of having breas

    Identification of masses in digital mammogram using gray level co-occurrence matrices

    Get PDF
    Digital mammogram has become the most effective technique for early breast cancer detection modality. Digital mammogram takes an electronic image of the breast and stores it directly in a computer. The aim of this study is to develop an automated system for assisting the analysis of digital mammograms. Computer image processing techniques will be applied to enhance images and this is followed by segmentation of the region of interest (ROI). Subsequently, the textural features will be extracted from the ROI. The texture features will be used to classify the ROIs as either masses or non-masses. In this study normal breast images and breast image with masses used as the standard input to the proposed system are taken from Mammographic Image Analysis Society (MIAS) digital mammogram database. In MIAS database, masses are grouped into either spiculated, circumscribed or ill-defined. Additional information includes location of masses centres and radius of masses. The extraction of the textural features of ROIs is done by using gray level co-occurrence matrices (GLCM) which is constructed at four different directions for each ROI. The results show that the GLCM at 0Âș, 45Âș, 90Âș and 135Âș with a block size of 8X8 give significant texture information to identify between masses and non-masses tissues. Analysis of GLCM properties i.e. contrast, energy and homogeneity resulted in receiver operating characteristics (ROC) curve area of Az = 0.84 for Otsu’s method, 0.82 for thresholding method and Az = 0.7 for K-mean clustering. ROC curve area of 0.8-0.9 is rated as good results. The authors’ proposed method contains no complicated algorithm. The detection is based on a decision tree with five criterions to be analysed. This simplicity leads to less computational time. Thus, this approach is suitable for automated real-time breast cancer diagnosis system

    Mammograms Classification Using Gray-level Co-occurrence Matrix and Radial Basis Function Neural Network

    Get PDF
    AbstractComputer Aided Diagnosis (CAD) is used to assist radiologist in classifying various type of breast cancers. It already proved its success not only in reducing human error in reading the mammograms but also shows better and reliable classification into benign and malignant abnormalities.This paper will report and attempt on using Radial Basis Function Neural Network (RBFNN) for mammograms classification based on Gray-level Co-occurrence Matrix (GLCM) texture based features.In this study, normal and abnormal breast image used as the standard input are taken from Mammographic Image Analysis Society (MIAS) digital mammogram database. The computational experiments show that RBFNN is better than Back-propagation Neural Network (BPNN) in performing breast cancer classification. For normal and abnormal classification, the result shows that RBFNN's accuracy is93.98%, which is 14% higher than BPNN, while the accuracy of benign and malignant classification is 94.29% which is 2% higher than BPNN

    Computer assisted screening of digital mammogram images

    Get PDF
    The use of computer systems to assist clinicians in digital mammography image screening has advantages over traditional methods. Computer algorithms can enhance the appearance of the images and highlight suspicious areas. Screening provides a more thorough examination of the images. Any computer system that does screening of digital mammograms contains components to address multiple tasks such as: image segmentation, mass lesion detection and classification, and microcalcification detection and classification. This dissertation provides both effective and efficient improvements to existing algorithms, which segment mammogram images and locate mass lesions. In addition, we provide a new algorithm to evaluate and report the results for mass lesion detection. The algorithm presented for mammogram segmentation uses a histogram based operator to define the boundaries between the different components of a mammogram image. It employs a unique clustering algorithm to produce closed, labeled sets of pixels which represent the distinct image components. The mass location algorithm uses a variation of template matching to locate suspicious areas. An evaluation of potential templates and algorithms is included. The method for testing and recording the results of the mass location algorithm groups suspicious pixels into regions and then compares them to the pathology

    Mammography

    Get PDF
    In this volume, the topics are constructed from a variety of contents: the bases of mammography systems, optimization of screening mammography with reference to evidence-based research, new technologies of image acquisition and its surrounding systems, and case reports with reference to up-to-date multimodality images of breast cancer. Mammography has been lagged in the transition to digital imaging systems because of the necessity of high resolution for diagnosis. However, in the past ten years, technical improvement has resolved the difficulties and boosted new diagnostic systems. We hope that the reader will learn the essentials of mammography and will be forward-looking for the new technologies. We want to express our sincere gratitude and appreciation?to all the co-authors who have contributed their work to this volume

    Detection of Malignant Tumour in Mammography Images Using Artificial Neural Networks with Fuzzy Rules

    Get PDF
    Breast cancer is a collection of cancer cells that starts in the breast cells and it expands from tissue of breast. Now a day Mammogram is one technique to detect the breast cancer earlyusing x-ray image of breast and it is used to reduce the deaths of breast cancer. This breast cancer disease is curable if discovered starting stage. This paper studies different methods utilized for the detection of breast cancer using mammogram classification. In this paper, the feature extraction and classification of mammogram image can be done by the artificial neural networks. Different kinds of feature extraction from mammogram image to detecting the bread cancer contains shape, position and surface features etc., this image feature extraction is significant in classification of image. By utilizing the image processing these image features are extracted. Image segmentation is performed for feature extraction of mammogram image, in this process image is partitioned into multiple segments, therefore when change the image representation into something that is more significant and simple to examine. Here the fuzzy rules are introduced to process the related data from cases of breast cancer in mammogram image in order to give the risk diagnosis of breast cancer. The preprocessing method is used to sustain an effectiveness of image by correct and adjusting the mammogram image and also it is used to improve the image quality and create it ready for additional working by reducing the unrelated noise to provide new brightness value in output image it is called as filtration and unwanted parts of background of mammogram image is eliminated. Some techniques are discussed for mammogram image classification to earlier detection of breast cancer

    Detecting microcalcification clusters in digital mammograms: Study for inclusion into computer aided diagnostic prompting system

    Full text link
    Among signs of breast cancer encountered in digital mammograms radiologists point to microcalcification clusters (MCCs). Their detection is a challenging problem from both medical and image processing point of views. This work presents two concurrent methods for MCC detection, and studies their possible inclusion to a computer aided diagnostic prompting system. One considers Wavelet Domain Hidden Markov Tree (WHMT) for modeling microcalcification edges. The model is used for differentiation between MC and non-MC edges based on the weighted maximum likelihood (WML) values. The classification of objects is carried out using spatial filters. The second method employs SUSAN edge detector in the spatial domain for mammogram segmentation. Classification of objects as calcifications is carried out using another set of spatial filters and Feedforward Neural Network (NN). A same distance filter is employed in both methods to find true clusters. The analysis of two methods is performed on 54 image regions from the mammograms selected randomly from DDSM database, including benign and cancerous cases as well as cases which can be classified as hard cases from both radiologists and the computer perspectives. WHMT/WML is able to detect 98.15% true positive (TP) MCCs under 1.85% of false positives (FP), whereas the SUSAN/NN method achieves 94.44% of TP at the cost of 1.85% for FP. The comparison of these two methods suggests WHMT/WML for the computer aided diagnostic prompting. It also certifies the low false positive rates for both methods, meaning less biopsy tests per patient
    • 

    corecore