1,350 research outputs found

    Mass problems and intuitionistic higher-order logic

    Full text link
    In this paper we study a model of intuitionistic higher-order logic which we call \emph{the Muchnik topos}. The Muchnik topos may be defined briefly as the category of sheaves of sets over the topological space consisting of the Turing degrees, where the Turing cones form a base for the topology. We note that our Muchnik topos interpretation of intuitionistic mathematics is an extension of the well known Kolmogorov/Muchnik interpretation of intuitionistic propositional calculus via Muchnik degrees, i.e., mass problems under weak reducibility. We introduce a new sheaf representation of the intuitionistic real numbers, \emph{the Muchnik reals}, which are different from the Cauchy reals and the Dedekind reals. Within the Muchnik topos we obtain a \emph{choice principle} (∀x ∃y A(x,y))⇒∃w ∀x A(x,wx)(\forall x\,\exists y\,A(x,y))\Rightarrow\exists w\,\forall x\,A(x,wx) and a \emph{bounding principle} (∀x ∃y A(x,y))⇒∃z ∀x ∃y (y≤T(x,z)∧A(x,y))(\forall x\,\exists y\,A(x,y))\Rightarrow\exists z\,\forall x\,\exists y\,(y\le_{\mathrm{T}}(x,z)\land A(x,y)) where x,y,zx,y,z range over Muchnik reals, ww ranges over functions from Muchnik reals to Muchnik reals, and A(x,y)A(x,y) is a formula not containing ww or zz. For the convenience of the reader, we explain all of the essential background material on intuitionism, sheaf theory, intuitionistic higher-order logic, Turing degrees, mass problems, Muchnik degrees, and Kolmogorov's calculus of problems. We also provide an English translation of Muchnik's 1963 paper on Muchnik degrees.Comment: 44 page

    Reasoning about Knowledge in Linear Logic: Modalities and Complexity

    No full text
    In a recent paper, Jean-Yves Girard commented that ”it has been a long time since philosophy has stopped intereacting with logic”[17]. Actually, it has no

    Constructive Mathematics in Theory and Programming Practice

    Get PDF
    The first part of the paper introduces the varieties of modern constructive mathematics, concentrating on Bishop’s constructive mathematics(BISH). It gives a sketch of both Myhill’s axiomatic system for BISH and a constructive axiomatic development of the real line R. The second part of the paper focuses on the relation between constructive mathematics and programming, with emphasis on Martin-Lof’s theory of types as a formal system for BISH

    Infinity

    Get PDF
    This essay surveys the different types of infinity that occur in pure and applied mathematics, with emphasis on: 1. the contrast between potential infinity and actual infinity; 2. Cantor's distinction between transfinite sets and absolute infinity; 3. the constructivist view of infinite quantifiers and the meaning of constructive proof; 4. the concept of feasibility and the philosophical problems surrounding feasible arithmetic; 5. Zeno's paradoxes and modern paradoxes of physical infinity involving supertasks

    On the connection between Nonstandard Analysis and Constructive Analysis

    Get PDF
    Constructive Analysis and Nonstandard Analysis are often characterized as completely antipodal approaches to analysis. We discuss the possibility of capturing the central notion of Constructive Analysis (i.e. algorithm, finite procedure or explicit construction) by a simple concept inside Nonstandard Analysis. To this end, we introduce Omega-invariance and argue that it partially satisfies our goal. Our results provide a dual approach to Erik Palmgren's development of Nonstandard Analysis inside constructive mathematics

    Offline and online data: on upgrading functional information to knowledge

    Get PDF
    This paper addresses the problem of upgrading functional information to knowledge. Functional information is defined as syntactically well-formed, meaningful and collectively opaque data. Its use in the formal epistemology of information theories is crucial to solve the debate on the veridical nature of information, and it represents the companion notion to standard strongly semantic information, defined as well-formed, meaningful and true data. The formal framework, on which the definitions are based, uses a contextual version of the verificationist principle of truth in order to connect functional to semantic information, avoiding Gettierization and decoupling from true informational contents. The upgrade operation from functional information uses the machinery of epistemic modalities in order to add data localization and accessibility as its main properties. We show in this way the conceptual worthiness of this notion for issues in contemporary epistemology debates, such as the explanation of knowledge process acquisition from information retrieval systems, and open data repositories

    Finitary Topos for Locally Finite, Causal and Quantal Vacuum Einstein Gravity

    Full text link
    Previous work on applications of Abstract Differential Geometry (ADG) to discrete Lorentzian quantum gravity is brought to its categorical climax by organizing the curved finitary spacetime sheaves of quantum causal sets involved therein, on which a finitary (:locally finite), singularity-free, background manifold independent and geometrically prequantized version of the gravitational vacuum Einstein field equations were seen to hold, into a topos structure. This topos is seen to be a finitary instance of both an elementary and a Grothendieck topos, generalizing in a differential geometric setting, as befits ADG, Sorkin's finitary substitutes of continuous spacetime topologies. The paper closes with a thorough discussion of four future routes we could take in order to further develop our topos-theoretic perspective on ADG-gravity along certain categorical trends in current quantum gravity research.Comment: 49 pages, latest updated version (errata corrected, references polished) Submitted to the International Journal of Theoretical Physic
    • …
    corecore