4,677 research outputs found

    Ovarian cancer: can proteomics give new insights for therapy and diagnosis?

    Get PDF
    The study of the ovarian proteomic profile represents a new frontier in ovarian cancer research, since this approach is able to enlighten the wide variety of post-translational events (such as glycosylation and phosphorylation). Due to the possibility of analyzing thousands of proteins, which could be simultaneously altered, comparative proteomics represent a promising model of possible biomarker discovery for ovarian cancer detection and monitoring. Moreover, defining signaling pathways in ovarian cancer cells through proteomic analysis offers the opportunity to design novel drugs and to optimize the use of molecularly targeted agents against crucial and biologically active pathways. Proteomic techniques provide more information about different histological types of ovarian cancer, cell growth and progression, genes related to tumor microenvironment and specific molecular targets predictive of response to chemotherapy than sequencing or microarrays. Estimates of specificity with proteomics are less consistent, but suggest a new role for combinations of biomarkers in early ovarian cancer diagnosis, such as the OVA1 test. Finally, the definition of the proteomic profiles in ovarian cancer would be accurate and effective in identifying which pathways are differentially altered, defining the most effective therapeutic regimen and eventually improving health outcomes

    Smoking-related DNA adducts as potential diagnostic markers of lung cancer: new perspectives

    Get PDF
    In recent years, the new direction such as identification of informative circulating markers reflecting molecular genetic changes in the DNA of tumor cells was actively developed. Smoking-related DNA adducts are very promising research area, since they indicate high pathogenetic importance in the lung carcinogenesis and can be identified in biological samples with high accuracy and reliability using highly sensitive mass spectrometry methods (TOF/TOF, TOF/MS, MS/MS). The appearance of DNA adducts in blood or tissues is the result of the interaction of carcinogenic factors, such as tobacco constituents, and the body reaction which is determined by individual characteristics of metabolic and repair systems. So, DNA adducts may be considered as a cumulative mirror of heterogeneous response of different individuals to smoking carcinogens, which finally could determine the risk for lung cancer. This review is devoted to analysis of the role of DNA adducts in lung carcinogenesis in order to demonstrate their usefulness as cancer associated markers. Currently, there are some serious limitations impeding the widespread use of DNA adducts as cancer biomarkers, due to failure of standardization of mass spectrometry analysis in order to correctly measure the adduct level in each individual. However, it is known that all DNA adducts are immunogenic, their accumulation over some threshold concentration leads to the appearance of long-living autoantibodies. Thus, detection of an informative pattern of autoantibodies against DNA adducts using innovative multiplex ELISA immunoassay may be a promising approach to find lung cancer at an early stage in high-risk groups (smokers, manufacturing workers, urban dwellers)

    EPMA position paper in cancer:current overview and future perspectives

    Get PDF
    At present, a radical shift in cancer treatment is occurring in terms of predictive, preventive, and personalized medicine (PPPM). Individual patients will participate in more aspects of their healthcare. During the development of PPPM, many rapid, specific, and sensitive new methods for earlier detection of cancer will result in more efficient management of the patient and hence a better quality of life. Coordination of the various activities among different healthcare professionals in primary, secondary, and tertiary care requires well-defined competencies, implementation of training and educational programs, sharing of data, and harmonized guidelines. In this position paper, the current knowledge to understand cancer predisposition and risk factors, the cellular biology of cancer, predictive markers and treatment outcome, the improvement in technologies in screening and diagnosis, and provision of better drug development solutions are discussed in the context of a better implementation of personalized medicine. Recognition of the major risk factors for cancer initiation is the key for preventive strategies (EPMA J. 4(1):6, 2013). Of interest, cancer predisposing syndromes in particular the monogenic subtypes that lead to cancer progression are well defined and one should focus on implementation strategies to identify individuals at risk to allow preventive measures and early screening/diagnosis. Implementation of such measures is disturbed by improper use of the data, with breach of data protection as one of the risks to be heavily controlled. Population screening requires in depth cost-benefit analysis to justify healthcare costs, and the parameters screened should provide information that allow an actionable and deliverable solution, for better healthcare provision

    Detection of skewed X-chromosome inactivation in Fragile X syndrome and X chromosome aneuploidy using quantitative melt analysis.

    Get PDF
    Methylation of the fragile X mental retardation 1 (FMR1) exon 1/intron 1 boundary positioned fragile X related epigenetic element 2 (FREE2), reveals skewed X-chromosome inactivation (XCI) in fragile X syndrome full mutation (FM: CGG > 200) females. XCI skewing has been also linked to abnormal X-linked gene expression with the broader clinical impact for sex chromosome aneuploidies (SCAs). In this study, 10 FREE2 CpG sites were targeted using methylation specific quantitative melt analysis (MS-QMA), including 3 sites that could not be analysed with previously used EpiTYPER system. The method was applied for detection of skewed XCI in FM females and in different types of SCA. We tested venous blood and saliva DNA collected from 107 controls (CGG < 40), and 148 FM and 90 SCA individuals. MS-QMA identified: (i) most SCAs if combined with a Y chromosome test; (ii) locus-specific XCI skewing towards the hypomethylated state in FM females; and (iii) skewed XCI towards the hypermethylated state in SCA with 3 or more X chromosomes, and in 5% of the 47,XXY individuals. MS-QMA output also showed significant correlation with the EpiTYPER reference method in FM males and females (P < 0.0001) and SCAs (P < 0.05). In conclusion, we demonstrate use of MS-QMA to quantify skewed XCI in two applications with diagnostic utility

    Germline ATM mutational analysis in BRCA1/BRCA2 negative hereditary breast cancer families by MALDI-TOF mass spectrometry

    Get PDF
    Biallelic inactivation of ATM gene causes the rare autosomal recessive disorder Ataxia-telangiectasia (A-T). Female relatives of A-T patients have a two-fold higher risk of developing breast cancer (BC) compared with the general population. ATM mutation carrier identification is laborious and expensive, therefore, a more rapid and directed strategy for ATM mutation profiling is needed. We designed a case-control study to determine the prevalence of 32 known ATM mutations causing A-T in Spanish population in 323 BRCA1/BRCA2 negative hereditary breast cancer (HBC) cases and 625 matched Spanish controls. For the detection of the 32 ATM mutations we used the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry technique. We identified one patient carrier of the c.8264_8268delATAAG ATM mutation. This mutation was not found in the 625 controls. These results suggest a low frequency of these 32 A-T causing mutations in the HBC cases in our population. Further case-control studies analyzing the entire coding and flanking sequences of the ATM gene are warranted in Spanish BC patients to know its implication in BC predisposition
    corecore