889 research outputs found

    Masquerade Attack Detection Using a Search-Behavior Modeling Approach

    Get PDF
    Masquerade attacks are unfortunately a familiar security problem that is a consequence of identity theft. Detecting masqueraders is very hard. Prior work has focused on user command modeling to identify abnormal behavior indicative of impersonation. This paper extends prior work by presenting one-class Hellinger distance-based and one-class SVM modeling techniques that use a set of novel features to reveal user intent. The specific objective is to model user search profiles and detect deviations indicating a masquerade attack. We hypothesize that each individual user knows their own file system well enough to search in a limited, targeted and unique fashion in order to find information germane to their current task. Masqueraders, on the other hand, will likely not know the file system and layout of another user's desktop, and would likely search more extensively and broadly in a manner that is different than the victim user being impersonated. We extend prior research that uses UNIX command sequences issued by users as the audit source by relying upon an abstraction of commands. We devise taxonomies of UNIX commands and Windows applications that are used to abstract sequences of user commands and actions. We also gathered our own normal and masquerader data sets captured in a Windows environment for evaluation. The datasets are publicly available for other researchers who wish to study masquerade attack rather than author identification as in much of the prior reported work. The experimental results show that modeling search behavior reliably detects all masqueraders with a very low false positive rate of 0.1%, far better than prior published results. The limited set of features used for search behavior modeling also results in huge performance gains over the same modeling techniques that use larger sets of features

    Modeling User Search-Behavior for Masquerade Detection

    Get PDF
    Masquerade attacks are a common security problem that is a consequence of identity theft. Prior work has focused on user command modeling to identify abnormal behavior indicative of impersonation. This paper extends prior work by modeling user search behavior to detect deviations indicating a masquerade attack. We hypothesize that each individual user knows their own file system well enough to search in a limited, targeted and unique fashion in order to find information germane to their current task. Masqueraders, on the other hand, will likely not know the file system and layout of another user's desktop, and would likely search more extensively and broadly in a manner that is different than the victim user being impersonated. We extend prior research by devising taxonomies of UNIX commands and Windows applications that are used to abstract sequences of user commands and actions. The experimental results show that modeling search behavior reliably detects all masqueraders with a very low false positive rate of 0.13%, far better than prior published results. The limited set of features used for search behavior modeling also results in large performance gains over the same modeling techniques that use larger sets of features

    Modeling User Search Behavior for Masquerade Detection

    Get PDF
    Masquerade attacks are a common security problem that is a consequence of identity theft. This paper extends prior work by modeling user search behavior to detect deviations indicating a masquerade attack. We hypothesize that each individual user knows their own file system well enough to search in a limited, targeted and unique fashion in order to find information germane to their current task. Masqueraders, on the other hand, will likely not know the file system and layout of another user's desktop, and would likely search more extensively and broadly in a manner that is different than the victim user being impersonated. We identify actions linked to search and information access activities, and use them to build user models. The experimental results show that modeling search behavior reliably detects all masqueraders with a very low false positive rate of 1.1%, far better than prior published results. The limited set of features used for search behavior modeling also results in large performance gains over the same modeling techniques that use larger sets of features

    Natural Language Processing as a Weapon

    Get PDF
    Natural Language Processing (NLP) is a science aimed at computationally interpreting written language. This field is maturing at an extraordinary pace. It is creating significant value and advancing a number of key research fronts. However, it also enables highly sophisticated phishing attacks. Given a large enough text sample, an NLP algorithm can identify and replicate defining characteristics of an individual’s communication patterns. This facilitates programmatic impersonation of trusted individuals. A natural language processor could interpret incoming text messages or email and improvise responses which approximate the language of a known contact. The recipient could be tricked into sharing sensitive information. Just how vulnerable are we? This paper reviews the state of the art of natural language processing and social engineering. It also describes a test which empirically assesses our ability to discern legitimate communications from algorithmically-produced forgeries
    • …
    corecore