154 research outputs found

    To Transformers and Beyond: Large Language Models for the Genome

    Full text link
    In the rapidly evolving landscape of genomics, deep learning has emerged as a useful tool for tackling complex computational challenges. This review focuses on the transformative role of Large Language Models (LLMs), which are mostly based on the transformer architecture, in genomics. Building on the foundation of traditional convolutional neural networks and recurrent neural networks, we explore both the strengths and limitations of transformers and other LLMs for genomics. Additionally, we contemplate the future of genomic modeling beyond the transformer architecture based on current trends in research. The paper aims to serve as a guide for computational biologists and computer scientists interested in LLMs for genomic data. We hope the paper can also serve as an educational introduction and discussion for biologists to a fundamental shift in how we will be analyzing genomic data in the future

    Dynamic Context Pruning for Efficient and Interpretable Autoregressive Transformers

    Full text link
    Autoregressive Transformers adopted in Large Language Models (LLMs) are hard to scale to long sequences. Despite several works trying to reduce their computational cost, most of LLMs still adopt attention layers between all pairs of tokens in the sequence, thus incurring a quadratic cost. In this study, we present a novel approach that dynamically prunes contextual information while preserving the model's expressiveness, resulting in reduced memory and computational requirements during inference. Our method employs a learnable mechanism that determines which uninformative tokens can be dropped from the context at any point across the generation process. By doing so, our approach not only addresses performance concerns but also enhances interpretability, providing valuable insight into the model's decision-making process. Our technique can be applied to existing pre-trained models through a straightforward fine-tuning process, and the pruning strength can be specified by a sparsity parameter. Notably, our empirical findings demonstrate that we can effectively prune up to 80\% of the context without significant performance degradation on downstream tasks, offering a valuable tool for mitigating inference costs. Our reference implementation achieves up to 2×2\times increase in inference throughput and even greater memory savings

    Fourier Transformer: Fast Long Range Modeling by Removing Sequence Redundancy with FFT Operator

    Full text link
    The transformer model is known to be computationally demanding, and prohibitively costly for long sequences, as the self-attention module uses a quadratic time and space complexity with respect to sequence length. Many researchers have focused on designing new forms of self-attention or introducing new parameters to overcome this limitation, however a large portion of them prohibits the model to inherit weights from large pretrained models. In this work, the transformer's inefficiency has been taken care of from another perspective. We propose Fourier Transformer, a simple yet effective approach by progressively removing redundancies in hidden sequence using the ready-made Fast Fourier Transform (FFT) operator to perform Discrete Cosine Transformation (DCT). Fourier Transformer is able to significantly reduce computational costs while retain the ability to inherit from various large pretrained models. Experiments show that our model achieves state-of-the-art performances among all transformer-based models on the long-range modeling benchmark LRA with significant improvement in both speed and space. For generative seq-to-seq tasks including CNN/DailyMail and ELI5, by inheriting the BART weights our model outperforms the standard BART and other efficient models. \footnote{Our code is publicly available at \url{https://github.com/LUMIA-Group/FourierTransformer}

    Improving Molecular Pretraining with Complementary Featurizations

    Full text link
    Molecular pretraining, which learns molecular representations over massive unlabeled data, has become a prominent paradigm to solve a variety of tasks in computational chemistry and drug discovery. Recently, prosperous progress has been made in molecular pretraining with different molecular featurizations, including 1D SMILES strings, 2D graphs, and 3D geometries. However, the role of molecular featurizations with their corresponding neural architectures in molecular pretraining remains largely unexamined. In this paper, through two case studies -- chirality classification and aromatic ring counting -- we first demonstrate that different featurization techniques convey chemical information differently. In light of this observation, we propose a simple and effective MOlecular pretraining framework with COmplementary featurizations (MOCO). MOCO comprehensively leverages multiple featurizations that complement each other and outperforms existing state-of-the-art models that solely relies on one or two featurizations on a wide range of molecular property prediction tasks.Comment: 24 pages, work in progres

    HyenaDNA: Long-Range Genomic Sequence Modeling at Single Nucleotide Resolution

    Full text link
    Genomic (DNA) sequences encode an enormous amount of information for gene regulation and protein synthesis. Similar to natural language models, researchers have proposed foundation models in genomics to learn generalizable features from unlabeled genome data that can then be fine-tuned for downstream tasks such as identifying regulatory elements. Due to the quadratic scaling of attention, previous Transformer-based genomic models have used 512 to 4k tokens as context (<0.001% of the human genome), significantly limiting the modeling of long-range interactions in DNA. In addition, these methods rely on tokenizers to aggregate meaningful DNA units, losing single nucleotide resolution where subtle genetic variations can completely alter protein function via single nucleotide polymorphisms (SNPs). Recently, Hyena, a large language model based on implicit convolutions was shown to match attention in quality while allowing longer context lengths and lower time complexity. Leveraging Hyenas new long-range capabilities, we present HyenaDNA, a genomic foundation model pretrained on the human reference genome with context lengths of up to 1 million tokens at the single nucleotide-level, an up to 500x increase over previous dense attention-based models. HyenaDNA scales sub-quadratically in sequence length (training up to 160x faster than Transformer), uses single nucleotide tokens, and has full global context at each layer. We explore what longer context enables - including the first use of in-context learning in genomics for simple adaptation to novel tasks without updating pretrained model weights. On fine-tuned benchmarks from the Nucleotide Transformer, HyenaDNA reaches state-of-the-art (SotA) on 12 of 17 datasets using a model with orders of magnitude less parameters and pretraining data. On the GenomicBenchmarks, HyenaDNA surpasses SotA on all 8 datasets on average by +9 accuracy points

    Reducing Sequence Length by Predicting Edit Operations with Large Language Models

    Full text link
    Large Language Models (LLMs) have demonstrated remarkable performance in various tasks and gained significant attention. LLMs are also used for local sequence transduction tasks, including grammatical error correction (GEC) and formality style transfer, where most tokens in a source text are kept unchanged. However, it is inefficient to generate all target tokens because a prediction error of a target token may cause a catastrophe in predicting subsequent tokens and because the computational cost grows quadratically with the target sequence length. This paper proposes to predict a set of edit operations for the source text for local sequence transduction tasks. Representing an edit operation with a span of the source text and changed tokens, we can reduce the length of the target sequence and thus the computational cost for inference. We apply instruction tuning for LLMs on the supervision data of edit operations. Experiments show that the proposed method achieves comparable performance to the baseline in four tasks, paraphrasing, formality style transfer, GEC, and text simplification, despite reducing the length of the target text by as small as 21\%. Furthermore, we report that the instruction tuning with the proposed method achieved the state-of-the-art performance in the four tasks.Comment: Work in progres
    • …
    corecore