125 research outputs found

    Developing xReality objects for mixed-reality environments.

    Get PDF

    Using mixed-reality to develop smart environments

    Get PDF
    Smart homes, smart cars, smart classrooms are now a reality as the world becomes increasingly interconnected by ubiquitous computing technology. The next step is to interconnect such environments, however there are a number of significant barriers to advancing research in this area, most notably the lack of available environments, standards and tools etc. A possible solution is the use of simulated spaces, nevertheless as realistic as strive to make them, they are, at best, only approximations to the real spaces, with important differences such as utilising idealised rather than noisy sensor data. In this respect, an improvement to simulation is emulation, which uses specially adapted physical components to imitate real systems and environments. In this paper we present our work-in-progress towards the creation of a development tool for intelligent environments based on the interconnection of simulated, emulated and real intelligent spaces using a distributed model of mixed reality. To do so, we propose the use of physical/virtual components (xReality objects) able to be combined through a 3D graphical user interface, sharing real-time information. We present three scenarios of interconnected real and emulated spaces, used for education, achieving integration between real and virtual worlds

    A European Platform for Distributed Real Time Modelling & Simulation of Emerging Electricity Systems

    Get PDF
    This report presents the proposal for the constitution of a European platform consisting of the federation of real-time modelling and simulation facilities applied to the analysis of emerging electricity systems. Such a platform can be understood as a pan-European distributed laboratory aiming at making use of the best available relevant resources and knowledge for the sake of supporting industry and policy makers and conducting advanced scientific research. The report describes the need for such a platform, with reference to the current status of power systems; the state of the art of the relevant technologies; and the character and format that the platform might take. This integrated distributed laboratory will facilitate the modelling, testing and assessment of power systems beyond the capacities of each single entity, enabling remote access to software and equipment anywhere in the EU, by establishing a real-time interconnection to the available facilities and capabilities within the Member States. Such an infrastructure will support the remote testing of devices, enhance simulation capabilities for large multi-scale and multi-layer systems, while also achieving soft-sharing of expertise in a large knowledge-based virtual environment. Furthermore the platform should offer the possibility of keeping confidential all susceptible data/models/algorithms, enabling the participants to determine which specific data will be shared with other actors. This kind of simulation platform will benefit all actors that need to take decisions in the power system area. This includes national and local authorities, regulators, network operators and utilities, manufacturers, consumers/prosumers. The federation of labs is created through real-time remote access to high-performance computing, data infrastructure and hardware and software components (electrical, electronic, ICT) assured by the interconnection of different labs with a server-cloud architecture where the local computers or machines interact with other labs through dedicated VPN (Virtual Private Network) over the GEANT network (the pan-European research and education network that interconnects Europe’s National Research and Education Networks ). The local VPN servers bridge the local simulation platform at each site and the cloud ensuring the security of the data exchange while offering a better coordination of the communication and the multi-point connection. It is then possible the integration of the different sub-systems (distribution grid, transmission grid, generation, market, and consumer behaviour) with a holistic approach

    Mashup Ecosystems: Integrating Web Resources on Desktop and Mobile Devices

    Get PDF
    The Web is increasingly used as an application platform, and recent development of it has introduced software ecosystems where different actors collaborate. This collaboration is international from day one, and it evolves and grows rapidly. In web ecosystems applications are provided as services, and interdependencies between ecosystem parts can vary from very strong and obvious to loose and recondite. Mashups -- web application hybrids that combine resources from different services into an integrated system that has increased value from user perspective -- are exploiting services of the Web and creating ecosystems where end-users, mashup authors, and service providers collaborate. The term "resources" is used here in a broad sense, and it can refer to user's local data, infinite content of the Web, and even executable code. This dissertation presents mashups as a new breed of web applications that are intended for parsing the web content into an easily accessed form on both regular desktop computers as well as on mobile devices. Constantly evolving web technologies and new web services open up unforeseen possibilities for mashup development. However, developing mashups with current methods and tools for existing deployment environments is challenging. First, the Web as an application platform faces numerous shortcomings, second, web application development practices in general are still immature, and third, development of mashups has additional requirements that need to be addressed. In addition, mobility sets even more challenges for mashup authoring. This dissertation describes and addresses numerous issues regarding mashup ecosystems and client-side mashup development. To achieve this, we have implemented technical research artifacts including mashup ecosystems and different kinds of mashup compositions. The artifacts are developed with numerous runtime environments and tools and targeted at different end-user platforms. This has allowed us to evaluate methods, tools, and practises used during the implementation. As result, this dissertation identifies the fundamental challenges of mashup ecosystems and describes how service providers and mashup ecosystem authors can address these challenges in practice. In addition, example implementation of a specialized multimedia mashup ecosystem for mobile devices is described. To address mashup development issues, this dissertation introduces practical guidelines and a reference architecture that can be applied when mashups are created with traditional web development tools. Moreover, environments that can be used on mobile devices to create mashups that have access to both web and local resources are introduced. Finally, a novel approach to web software development -- creating software as a mashup -- is introduced, and a realization of such concept is described

    CLOUD COMPUTING MADE EASY

    Get PDF
    Cloud computing is the delivery of computing as a service rather than as a product, where by shared resources software and information are provided to computer are other device as a utility over a network. In a cloud computing system, there is a significant workload shift. Local computers no longer have to do all the heavy lifting, when it comes to running applications. The network of computers that makeup the cloud handles them instead. Hardware and software demand on the users side decrease. The only thing the users’ computer needs to be able to run is the cloud computing systems interface software, which can be as simple as a web browser and the clouds network take care of the rest. This article is prepared based on the Author’s teaching the subject for M.Tech level recent years, keeping in view of VTU Syllabus in particular

    Implementation of an IoT-based Sensor Network Integrating IoT-based Sensor Networks with Large-Scale Message Distribution

    Get PDF
    As technology advances not only do new standards and programming styles appear but also some of the previously established ones gain relevance. In a new Internet paradigm where interconnection between small devices is key to the development of new businesses and scientific advancement there is the need to find simple solutions that anyone can implement in order to allow ideas to become more than that, ideas. Open-source software is still alive and well, especially in the area of the Internet of Things. This opens windows for many low capital entrepreneurs to experiment with their ideas and actually develop prototypes, which can help identify problems with a project or shine light on possible new features and interactions. As programming becomes more and more popular between people of fields not related to software there is the need for guidance in developing something other than basic algorithms, which is where this thesis comes in: A comprehensive document explaining the challenges and available choices of developing a sensor data and message delivery system, which scales well and implements the delivery of critical messages. Modularity and extensibility were also given much importance, making this an affordable tool for anyone that wants to build a sensor network of the kind

    TechNews digests: Jan - Nov 2009

    Get PDF
    TechNews is a technology, news and analysis service aimed at anyone in the education sector keen to stay informed about technology developments, trends and issues. TechNews focuses on emerging technologies and other technology news. TechNews service : digests september 2004 till May 2010 Analysis pieces and News combined publish every 2 to 3 month

    Empowering Mobile Art Practice : A Recontextualization of Mobile and Ubiquitous Computing

    Get PDF
    Creating art with mobile phones in public spaces is an emerging form of artistic expression. This dissertation investigates the design and use of mobile art applications for creating and sharing interactive art experiences in public spaces. It explores new ways of deploying mobile and ubiquitous computing for art making that fosters creativity and community. This is done by developing a series of novel prototype applications, with a focus on multimodal interfaces that are put into use in authentic environments for validation by real people. The approach is to couple an artistically motivated design and innovation process with mobile, web and public display technologies, in order to explore the prototypes that build the empirical framework of this research. Multimodal interfaces address many of the human senses, such as seeing, hearing, touching; they thus provide powerful user experiences. Combining spaces with different modalities provides new possibilities for real-time interaction and engaging experiences. But there is a problem in that little is known about how to design multimodal interfaces and systems to work in the context of the city as digital interface, especially how to enable participatory, real-time interaction in urban space to foster creativity and togetherness. The resulting mobile art applications signal a new era in digital creativity, as they show the strengths of future mobile interactive platforms. The key points are providing engaging experiences of mass participation both locally and physically distributed; enabling creativity; and promoting real-time interaction not only between ‘people and people’ or ‘people and machines’ but also between ‘people and things’, such as nature, buildings, objects and the physical environment generally. These forthcoming approaches will lead to designs and implementations of new mobile interaction platforms, which eventually will lead us to new leisure time activities, such as creating and sharing art experiences in public space, but also to new ways of living an art- and culture-inspired lifestyle - empowering mobile art practice
    • …
    corecore