127 research outputs found

    On packet marking and Markov modeling for IP Traceback: A deep probabilistic and stochastic analysis

    Get PDF
    From many years, the methods to defend against Denial of Service attacks have been very attractive from different point of views, although network security is a large and very complex topic. Different techniques have been proposed and so-called packet marking and IP tracing procedures have especially demonstrated a good capacity to face different malicious attacks. While host-based DoS attacks are more easily traced and managed, network-based DoS attacks are a more challenging threat. In this paper, we discuss a powerful aspect of the IP traceback method, which allows a router to mark and add information to attack packets on the basis of a fixed probability value. We propose a potential method for modeling the classic probabilistic packet marking algorithm as Markov chains, allowing a closed form to be obtained for evaluating the correct number of received marked packets in order to build a meaningful attack graph and analyze how marking routers must behave to minimize the overall overhead

    Secure Routing in Wireless Mesh Networks

    Get PDF
    Wireless mesh networks (WMNs) have emerged as a promising concept to meet the challenges in next-generation networks such as providing flexible, adaptive, and reconfigurable architecture while offering cost-effective solutions to the service providers. Unlike traditional Wi-Fi networks, with each access point (AP) connected to the wired network, in WMNs only a subset of the APs are required to be connected to the wired network. The APs that are connected to the wired network are called the Internet gateways (IGWs), while the APs that do not have wired connections are called the mesh routers (MRs). The MRs are connected to the IGWs using multi-hop communication. The IGWs provide access to conventional clients and interconnect ad hoc, sensor, cellular, and other networks to the Internet. However, most of the existing routing protocols for WMNs are extensions of protocols originally designed for mobile ad hoc networks (MANETs) and thus they perform sub-optimally. Moreover, most routing protocols for WMNs are designed without security issues in mind, where the nodes are all assumed to be honest. In practical deployment scenarios, this assumption does not hold. This chapter provides a comprehensive overview of security issues in WMNs and then particularly focuses on secure routing in these networks. First, it identifies security vulnerabilities in the medium access control (MAC) and the network layers. Various possibilities of compromising data confidentiality, data integrity, replay attacks and offline cryptanalysis are also discussed. Then various types of attacks in the MAC and the network layers are discussed. After enumerating the various types of attacks on the MAC and the network layer, the chapter briefly discusses on some of the preventive mechanisms for these attacks.Comment: 44 pages, 17 figures, 5 table

    A control theoretic approach for security of cyber-physical systems

    Get PDF
    In this dissertation, several novel defense methodologies for cyber-physical systems have been proposed. First, a special type of cyber-physical system, the RFID system, is considered for which a lightweight mutual authentication and ownership management protocol is proposed in order to protect the data confidentiality and integrity. Then considering the fact that the protection of the data confidentiality and integrity is insufficient to guarantee the security in cyber-physical systems, we turn to the development of a general framework for developing security schemes for cyber-physical systems wherein the cyber system states affect the physical system and vice versa. After that, we apply this general framework by selecting the traffic flow as the cyber system state and a novel attack detection scheme that is capable of capturing the abnormality in the traffic flow in those communication links due to a class of attacks has been proposed. On the other hand, an attack detection scheme that is capable of detecting both sensor and actuator attacks is proposed for the physical system in the presence of network induced delays and packet losses. Next, an attack detection scheme is proposed when the network parameters are unknown by using an optimal Q-learning approach. Finally, this attack detection and accommodation scheme has been further extended to the case where the network is modeled as a nonlinear system with unknown system dynamics --Abstract, page iv

    Modelling Load-Changing Attacks in Cyber-Physical Systems

    Get PDF
    Cyber-Physical Systems (CPS) are present in many settings addressing a myriad of purposes. Examples are Internet-of-Things (IoT) or sensing software embedded in appliances or even specialised meters that measure and respond to electricity demands in smart grids. Due to their pervasive nature, they are usually chosen as recipients for larger scope cyber-security attacks. Those promote system-wide disruptions and are directed towards one key aspect such as confidentiality, integrity, availability or a combination of those characteristics. Our paper focuses on a particular and distressing attack where coordinated malware infected IoT units are maliciously employed to synchronously turn on or off high-wattage appliances, affecting the grid's primary control management. Our model could be extended to larger (smart) grids, Active Buildings as well as similar infrastructures. Our approach models Coordinated Load-Changing Attacks (CLCA) also referred as GridLock or BlackIoT, against a theoretical power grid, containing various types of power plants. It employs Continuous-Time Markov Chains where elements such as Power Plants and Botnets are modelled under normal or attack situations to evaluate the effect of CLCA in power reliant infrastructures. We showcase our modelling approach in the scenario of a power supplier (e.g. power plant) being targeted by a botnet. We demonstrate how our modelling approach can quantify the impact of a botnet attack and be abstracted for any CPS system involving power load management in a smart grid. Our results show that by prioritising the type of power-plants, the impact of the attack may change: in particular, we find the most impacting attack times and show how different strategies impact their success. We also find the best power generator to use depending on the current demand and strength of attack

    A new framework to alleviate DDoS vulnerabilities in cloud computing

    Get PDF
    In the communication age, the Internet has growing very fast and most industries rely on it. An essential part of Internet, Web applications like online booking, e-banking, online shopping, and e-learning plays a vital role in everyday life. Enhancements have been made in this domain, in which the web servers depend on cloud location for resources. Many organizations around the world change their operations and data storage from local to cloud platforms for many reasons especially the availability factor. Even though cloud computing is considered a renowned technology, it has many challenges, the most important one is security. One of the major issue in the cloud security is Distributed Denial of Service attack (DDoS), which results in serious loss if the attack is successful and left unnoticed. This paper focuses on preventing and detecting DDoS attacks in distributed and cloud environment. A new framework has been suggested to alleviate the DDoS attack and to provide availability of cloud resources to its users. The framework introduces three screening tests VISUALCOM, IMGCOM, and AD-IMGCOM to prevent the attack and two queues with certain constraints to detect the attack. The result of our framework shows an improvement and better outcomes and provides a recovered from attack detection with high availability rate. Also, the performance of the queuing model has been analysed

    Feature Subset Selection in Intrusion Detection Using Soft Computing Techniques

    Get PDF
    Intrusions on computer network systems are major security issues these days. Therefore, it is of utmost importance to prevent such intrusions. The prevention of such intrusions is entirely dependent on their detection that is a main part of any security tool such as Intrusion Detection System (IDS), Intrusion Prevention System (IPS), Adaptive Security Alliance (ASA), checkpoints and firewalls. Therefore, accurate detection of network attack is imperative. A variety of intrusion detection approaches are available but the main problem is their performance, which can be enhanced by increasing the detection rates and reducing false positives. Such weaknesses of the existing techniques have motivated the research presented in this thesis. One of the weaknesses of the existing intrusion detection approaches is the usage of a raw dataset for classification but the classifier may get confused due to redundancy and hence may not classify correctly. To overcome this issue, Principal Component Analysis (PCA) has been employed to transform raw features into principal features space and select the features based on their sensitivity. The sensitivity is determined by the values of eigenvalues. The recent approaches use PCA to project features space to principal feature space and select features corresponding to the highest eigenvalues, but the features corresponding to the highest eigenvalues may not have the optimal sensitivity for the classifier due to ignoring many sensitive features. Instead of using traditional approach of selecting features with the highest eigenvalues such as PCA, this research applied a Genetic Algorithm (GA) to search the principal feature space that offers a subset of features with optimal sensitivity and the highest discriminatory power. Based on the selected features, the classification is performed. The Support Vector Machine (SVM) and Multilayer Perceptron (MLP) are used for classification purpose due to their proven ability in classification. This research work uses the Knowledge Discovery and Data mining (KDD) cup dataset, which is considered benchmark for evaluating security detection mechanisms. The performance of this approach was analyzed and compared with existing approaches. The results show that proposed method provides an optimal intrusion detection mechanism that outperforms the existing approaches and has the capability to minimize the number of features and maximize the detection rates

    Improving Dependability of Networks with Penalty and Revocation Mechanisms

    Get PDF
    Both malicious and non-malicious faults can dismantle computer networks. Thus, mitigating faults at various layers is essential in ensuring efficient and fair network resource utilization. In this thesis we take a step in this direction and study several ways to deal with faults by means of penalties and revocation mechanisms in networks that are lacking a centralized coordination point, either because of their scale or design. Compromised nodes can pose a serious threat to infrastructure, end-hosts and services. Such malicious elements can undermine the availability and fairness of networked systems. To deal with such nodes, we design and analyze protocols enabling their removal from the network in a fast and a secure way. We design these protocols for two different environments. In the former setting, we assume that there are multiple, but independent trusted points in the network which coordinate other nodes in the network. In the latter, we assume that all nodes play equal roles in the network and thus need to cooperate to carry out common functionality. We analyze these solutions and discuss possible deployment scenarios. Next we turn our attention to wireless edge networks. In this context, some nodes, without being malicious, can still behave in an unfair manner. To deal with the situation, we propose several self-penalty mechanisms. We implement the proposed protocols employing a commodity hardware and conduct experiments in real-world environments. The analysis of data collected in several measurement rounds revealed improvements in terms of higher fairness and throughput. We corroborate the results with simulations and an analytic model. And finally, we discuss how to measure fairness in dynamic settings, where nodes can have heterogeneous resource demands

    Adaptive algorithms for identifying large flows in IP traffic

    Get PDF
    We propose in this paper an on-line algorithm based on Bloom filters for identifying large flows in IP traffic (a.k.a. elephants). Because of the large number of small flows, hash tables of these algorithms have to be regularly refreshed. Recognizing that the periodic erasure scheme usually used in the technical literature turns out to be quite inefficient when using real traffic traces over a long period of time, we introduce a simple adaptive scheme that closely follows the variations of traffic. When tested against real traffic traces, the proposed on-line algorithm performs well in the sense that the detection ratio of long flows by the algorithm over a long time period is quite high. Beyond the identification of elephants, this same class of algorithms is applied to the closely related problem of detection of anomalies in IP traffic, e.g., SYN flood due for instance to attacks. An algorithm for detecting SYN and volume flood anomalies in Internet traffic is designed. Experiments show that an anomaly is detected in less than one minute and the targeted destinations are identified at the same time

    Performance analysis of mobile networks under signalling storms

    Get PDF
    There are numerous security challenges in cellular mobile networks, many of which originate from the Internet world. One of these challenges is to answer the problem with increasing rate of signalling messages produced by smart devices. In particular, many services in the Internet are provided through mobile applications in an unobstructed manner, such that users get an always connected feeling. These services, which usually come from instant messaging, advertising and social networking areas, impose significant signalling loads on mobile networks by frequent exchange of control data in the background. Such services and applications could be built intentionally or unintentionally, and result in denial of service attacks known as signalling attacks or storms. Negative consequences, among others, include degradations of mobile network’s services, partial or complete net- work failures, increased battery consumption for infected mobile terminals. This thesis examines the influence of signalling storms on different mobile technologies, and proposes defensive mechanisms. More specifically, using stochastic modelling techniques, this thesis first presents a model of the vulnerability in a single 3G UMTS mobile terminal, and studies the influence of the system’s internal parameters on stability under a signalling storm. Further on, it presents a queueing network model of the radio access part of 3G UMTS and examines the effect of the radio resource control (RRC) inactivity timers. In presence of an attack, the proposed dynamic setting of the timers manage to lower the signalling load in the network and to increase the threshold above which a network failure could happen. Further on, the network model is upgraded into a more generic and detailed model, represent different generations of mobile technologies. It is than used to compare technologies with dedicated and shared organisation of resource allocation, referred to as traditional and contemporary networks, using performance metrics such as: signalling and communication delay, blocking probability, signalling load on the network’s nodes, bandwidth holding time, etc. Finally, based on the carried analysis, two mechanisms are proposed for detection of storms in real time, based on counting of same-type bandwidth allocations, and usage of allocated bandwidth. The mechanisms are evaluated using discrete event simulation in 3G UMTS, and experiments are done combining the detectors with a simple attack mitigation approach.Open Acces
    • …
    corecore