175 research outputs found

    Visual modeling and simulation of multiscale phenomena

    Get PDF
    Many large-scale systems seen in real life, such as human crowds, fluids, and granular materials, exhibit complicated motion at many different scales, from a characteristic global behavior to important small-scale detail. Such multiscale systems are computationally expensive for traditional simulation techniques to capture over the full range of scales. In this dissertation, I present novel techniques for scalable and efficient simulation of these large, complex phenomena for visual computing applications. These techniques are based on a new approach of representing a complex system by coupling together separate models for its large-scale and fine-scale dynamics. In fluid simulation, it remains a challenge to efficiently simulate fine local detail such as foam, ripples, and turbulence without compromising the accuracy of the large-scale flow. I present two techniques for this problem that combine physically-based numerical simulation for the global flow with efficient local models for detail. For surface features, I propose the use of texture synthesis, guided by the physical characteristics of the macroscopic flow. For turbulence in the fluid motion itself, I present a technique that tracks the transfer of energy from the mean flow to the turbulent fluctuations and synthesizes these fluctuations procedurally, allowing extremely efficient visual simulation of turbulent fluids. Another large class of problems which are not easily handled by traditional approaches is the simulation of very large aggregates of discrete entities, such as dense pedestrian crowds and granular materials. I present a technique for crowd simulation that couples a discrete per-agent model of individual navigation with a novel continuum formulation for the collective motion of pedestrians. This approach allows simulation of dense crowds of a hundred thousand agents at near-real-time rates on desktop computers. I also present a technique for simulating granular materials, which generalizes this model and introduces a novel computational scheme for friction. This method efficiently reproduces a wide range of granular behavior and allows two-way interaction with simulated solid bodies. In all of these cases, the proposed techniques are typically an order of magnitude faster than comparable existing methods. Through these applications to a diverse set of challenging simulation problems, I demonstrate the benefits of the proposed approach, showing that it is a powerful and versatile technique for the simulation of a broad range of large and complex systems

    The State of the Art in Flow Visualization: Dense and Texture-Based Techniques

    Get PDF
    Flow visualization has been a very attractive component of scientific visualization research for a long time. Usually very large multivariate datasets require processing. These datasets often consist of a large number of sample locations and several time steps. The steadily increasing performance of computers has recently become a driving factor for a reemergence in flow visualization research, especially in texture-based techniques. In this paper, dense, texture-based flow visualization techniques are discussed. This class of techniques attempts to provide a complete, dense representation of the flow field with high spatio-temporal coherency. An attempt of categorizing closely related solutions is incorporated and presented. Fundamentals are shortly addressed as well as advantages and disadvantages of the methods. Categories and Subject Descriptors (according to ACM CCS): I.3 [Computer Graphics]: visualization, flow visualization, computational flow visualizatio

    CASA 2009:International Conference on Computer Animation and Social Agents

    Get PDF

    Intelligent Computational Transportation

    Get PDF
    Transportation is commonplace around our world. Numerous researchers dedicate great efforts to vast transportation research topics. The purpose of this dissertation is to investigate and address a couple of transportation problems with respect to geographic discretization, pavement surface automatic examination, and traffic ow simulation, using advanced computational technologies. Many applications require a discretized 2D geographic map such that local information can be accessed efficiently. For example, map matching, which aligns a sequence of observed positions to a real-world road network, needs to find all the nearby road segments to the individual positions. To this end, the map is discretized by cells and each cell retains a list of road segments coincident with this cell. An efficient method is proposed to form such lists for the cells without costly overlapping tests. Furthermore, the method can be easily extended to 3D scenarios for fast triangle mesh voxelization. Pavement surface distress conditions are critical inputs for quantifying roadway infrastructure serviceability. Existing computer-aided automatic examination techniques are mainly based on 2D image analysis or 3D georeferenced data set. The disadvantage of information losses or extremely high costs impedes their effectiveness iv and applicability. In this study, a cost-effective Kinect-based approach is proposed for 3D pavement surface reconstruction and cracking recognition. Various cracking measurements such as alligator cracking, traverse cracking, longitudinal cracking, etc., are identified and recognized for their severity examinations based on associated geometrical features. Smart transportation is one of the core components in modern urbanization processes. Under this context, the Connected Autonomous Vehicle (CAV) system presents a promising solution towards the enhanced traffic safety and mobility through state-of-the-art wireless communications and autonomous driving techniques. Due to the different nature between the CAVs and the conventional Human- Driven-Vehicles (HDVs), it is believed that CAV-enabled transportation systems will revolutionize the existing understanding of network-wide traffic operations and re-establish traffic ow theory. This study presents a new continuum dynamics model for the future CAV-enabled traffic system, realized by encapsulating mutually-coupled vehicle interactions using virtual internal and external forces. A Smoothed Particle Hydrodynamics (SPH)-based numerical simulation and an interactive traffic visualization framework are also developed

    NASA Tech Briefs, March 1995

    Get PDF
    This issue contains articles with a special focus on Computer-Aided design and engineering amd a research report on the Ames Research Center. Other subjects in this issue are: Electronic Components and Circuits, Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Manufacturing/Fabrication, Mathematics and Information Sciences and Life Science

    Human factors in instructional augmented reality for intravehicular spaceflight activities and How gravity influences the setup of interfaces operated by direct object selection

    Get PDF
    In human spaceflight, advanced user interfaces are becoming an interesting mean to facilitate human-machine interaction, enhancing and guaranteeing the sequences of intravehicular space operations. The efforts made to ease such operations have shown strong interests in novel human-computer interaction like Augmented Reality (AR). The work presented in this thesis is directed towards a user-driven design for AR-assisted space operations, iteratively solving issues arisen from the problem space, which also includes the consideration of the effect of altered gravity on handling such interfaces.Auch in der bemannten Raumfahrt steigt das Interesse an neuartigen Benutzerschnittstellen, um nicht nur die Mensch-Maschine-Interaktion effektiver zu gestalten, sondern auch um einen korrekten Arbeitsablauf sicherzustellen. In der Vergangenheit wurden wiederholt Anstrengungen unternommen, Innenbordarbeiten mit Hilfe von Augmented Reality (AR) zu erleichtern. Diese Arbeit konzentriert sich auf einen nutzerorientierten AR-Ansatz, welcher zum Ziel hat, die Probleme schrittweise in einem iterativen Designprozess zu lösen. Dies erfordert auch die Berücksichtigung veränderter Schwerkraftbedingungen

    PHYSICS-AWARE MODEL SIMPLIFICATION FOR INTERACTIVE VIRTUAL ENVIRONMENTS

    Get PDF
    Rigid body simulation is an integral part of Virtual Environments (VE) for autonomous planning, training, and design tasks. The underlying physics-based simulation of VE must be accurate and computationally fast enough for the intended application, which unfortunately are conflicting requirements. Two ways to perform fast and high fidelity physics-based simulation are: (1) model simplification, and (2) parallel computation. Model simplification can be used to allow simulation at an interactive rate while introducing an acceptable level of error. Currently, manual model simplification is the most common way of performing simulation speedup but it is time consuming. Hence, in order to reduce the development time of VEs, automated model simplification is needed. The dissertation presents an automated model simplification approach based on geometric reasoning, spatial decomposition, and temporal coherence. Geometric reasoning is used to develop an accessibility based algorithm for removing portions of geometric models that do not play any role in rigid body to rigid body interaction simulation. Removing such inaccessible portions of the interacting rigid body models has no influence on the simulation accuracy but reduces computation time significantly. Spatial decomposition is used to develop a clustering algorithm that reduces the number of fluid pressure computations resulting in significant speedup of rigid body and fluid interaction simulation. Temporal coherence algorithm reuses the computed force values from rigid body to fluid interaction based on the coherence of fluid surrounding the rigid body. The simulations are further sped up by performing computing on graphics processing unit (GPU). The dissertation also presents the issues pertaining to the development of parallel algorithms for rigid body simulations both on multi-core processors and GPU. The developed algorithms have enabled real-time, high fidelity, six degrees of freedom, and time domain simulation of unmanned sea surface vehicles (USSV) and can be used for autonomous motion planning, tele-operation, and learning from demonstration applications

    Intelligent Sensor Networks

    Get PDF
    In the last decade, wireless or wired sensor networks have attracted much attention. However, most designs target general sensor network issues including protocol stack (routing, MAC, etc.) and security issues. This book focuses on the close integration of sensing, networking, and smart signal processing via machine learning. Based on their world-class research, the authors present the fundamentals of intelligent sensor networks. They cover sensing and sampling, distributed signal processing, and intelligent signal learning. In addition, they present cutting-edge research results from leading experts

    Architectures for online simulation-based inference applied to robot motion planning

    Get PDF
    Robotic systems have enjoyed significant adoption in industrial and field applications in structured environments, where clear specifications of the task and observations are available. Deploying robots in unstructured and dynamic environments remains a challenge, being addressed through emerging advances in machine learning. The key open issues in this area include the difficulty of achieving coverage of all factors of variation in the domain of interest, satisfying safety constraints, etc. One tool that has played a crucial role in addressing these issues is simulation - which is used to generate data, and sometimes as a world representation within the decision-making loop. When physical simulation modules are used in this way, a number of computational problems arise. Firstly, a suitable simulation representation and fidelity is required for the specific task of interest. Secondly, we need to perform parameter inference of physical variables being used in the simulation models. Thirdly, there is the need for data assimilation, which must be achieved in real-time if the resulting model is to be used within the online decision-making loop. These are the motivating problems for this thesis. In the first section of the thesis, we tackle the inference problem with respect to a fluid simulation model, where a sensorised UAV performs path planning with the objective of acquiring data including gas concentration/identity and IMU-based wind estimation readings. The task for the UAV is to localise the source of a gas leak, while accommodating the subsequent dispersion of the gas in windy conditions. We present a formulation of this problem that allows us to perform online and real-time active inference efficiently through problem-specific simplifications. In the second section of the thesis, we explore the problem of robot motion planning when the true state is not fully observable, and actions influence how much of the state is subsequently observed. This is motivated by the practical problem of a robot performing suction in the surgical automation setting. The objective is the efficient removal of liquid while respecting a safety constraint - to not touch the underlying tissue if possible. If the problem were represented in full generality, as one of planning under uncertainty and hidden state, it could be hard to find computationally efficient solutions. Once again, we make problem-specific simplifications. Crucially, instead of reasoning in general about fluid flows and arbitrary surfaces, we exploit the observations that the decision can be informed by the contour tree skeleton of the volume, and the configurations in which the fluid would come to rest if unperturbed. This allows us to address the problem as one of iterative shortest path computation, whose costs are informed by a model estimating the shape of the underlying surface. In the third and final section of the thesis, we propose a model for real-time parameter estimation directly from raw pixel observations. Through the use of a Variational Recurrent Neural Network model, where the latent space is further structured by penalising for fit to data from a physical simulation, we devise an efficient online inference scheme. This is first shown in the context of a representative dynamic manipulation task for a robot. This task involves reasoning about a bouncing ball that it must catch – using as input the raw video from an environment-mounted camera and accommodating noise and variations in the object and environmental conditions. We then show that the same architecture lends itself to solving inference problems involving more complex dynamics, by applying this to measurement inversion of ultrafast X-Ray scattering data to infer molecular geometry

    Proceedings of the 2009 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory

    Get PDF
    The joint workshop of the Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB, Karlsruhe, and the Vision and Fusion Laboratory (Institute for Anthropomatics, Karlsruhe Institute of Technology (KIT)), is organized annually since 2005 with the aim to report on the latest research and development findings of the doctoral students of both institutions. This book provides a collection of 16 technical reports on the research results presented on the 2009 workshop
    • …
    corecore