2,809 research outputs found

    Real-time deep hair matting on mobile devices

    Full text link
    Augmented reality is an emerging technology in many application domains. Among them is the beauty industry, where live virtual try-on of beauty products is of great importance. In this paper, we address the problem of live hair color augmentation. To achieve this goal, hair needs to be segmented quickly and accurately. We show how a modified MobileNet CNN architecture can be used to segment the hair in real-time. Instead of training this network using large amounts of accurate segmentation data, which is difficult to obtain, we use crowd sourced hair segmentation data. While such data is much simpler to obtain, the segmentations there are noisy and coarse. Despite this, we show how our system can produce accurate and fine-detailed hair mattes, while running at over 30 fps on an iPad Pro tablet.Comment: 7 pages, 7 figures, submitted to CRV 201

    Dynamic Face Video Segmentation via Reinforcement Learning

    Full text link
    For real-time semantic video segmentation, most recent works utilised a dynamic framework with a key scheduler to make online key/non-key decisions. Some works used a fixed key scheduling policy, while others proposed adaptive key scheduling methods based on heuristic strategies, both of which may lead to suboptimal global performance. To overcome this limitation, we model the online key decision process in dynamic video segmentation as a deep reinforcement learning problem and learn an efficient and effective scheduling policy from expert information about decision history and from the process of maximising global return. Moreover, we study the application of dynamic video segmentation on face videos, a field that has not been investigated before. By evaluating on the 300VW dataset, we show that the performance of our reinforcement key scheduler outperforms that of various baselines in terms of both effective key selections and running speed. Further results on the Cityscapes dataset demonstrate that our proposed method can also generalise to other scenarios. To the best of our knowledge, this is the first work to use reinforcement learning for online key-frame decision in dynamic video segmentation, and also the first work on its application on face videos.Comment: CVPR 2020. 300VW with segmentation labels is available at: https://github.com/mapleandfire/300VW-Mas

    Facial Point Detection using Boosted Regression and Graph Models

    Get PDF
    Finding fiducial facial points in any frame of a video showing rich naturalistic facial behaviour is an unsolved problem. Yet this is a crucial step for geometric-featurebased facial expression analysis, and methods that use appearance-based features extracted at fiducial facial point locations. In this paper we present a method based on a combination of Support Vector Regression and Markov Random Fields to drastically reduce the time needed to search for a point’s location and increase the accuracy and robustness of the algorithm. Using Markov Random Fields allows us to constrain the search space by exploiting the constellations that facial points can form. The regressors on the other hand learn a mapping between the appearance of the area surrounding a point and the positions of these points, which makes detection of the points very fast and can make the algorithm robust to variations of appearance due to facial expression and moderate changes in head pose. The proposed point detection algorithm was tested on 1855 images, the results of which showed we outperform current state of the art point detectors

    A Generative Model for Parts-based Object Segmentation

    Get PDF
    The Shape Boltzmann Machine (SBM) [1] has recently been introduced as a stateof-the-art model of foreground/background object shape. We extend the SBM to account for the foreground object’s parts. Our new model, the Multinomial SBM (MSBM), can capture both local and global statistics of part shapes accurately. We combine the MSBM with an appearance model to form a fully generative model of images of objects. Parts-based object segmentations are obtained simply by performing probabilistic inference in the model. We apply the model to two challenging datasets which exhibit significant shape and appearance variability, and find that it obtains results that are comparable to the state-of-the-art. There has been significant focus in computer vision on object recognition and detection e.g. [2], but a strong desire remains to obtain richer descriptions of objects than just their bounding boxes. One such description is a parts-based object segmentation, in which an image is partitioned into multiple sets of pixels, each belonging to either a part of the object of interest, or its background. The significance of parts in computer vision has been recognized since the earliest days of th

    Driver Distraction Identification with an Ensemble of Convolutional Neural Networks

    Full text link
    The World Health Organization (WHO) reported 1.25 million deaths yearly due to road traffic accidents worldwide and the number has been continuously increasing over the last few years. Nearly fifth of these accidents are caused by distracted drivers. Existing work of distracted driver detection is concerned with a small set of distractions (mostly, cell phone usage). Unreliable ad-hoc methods are often used.In this paper, we present the first publicly available dataset for driver distraction identification with more distraction postures than existing alternatives. In addition, we propose a reliable deep learning-based solution that achieves a 90% accuracy. The system consists of a genetically-weighted ensemble of convolutional neural networks, we show that a weighted ensemble of classifiers using a genetic algorithm yields in a better classification confidence. We also study the effect of different visual elements in distraction detection by means of face and hand localizations, and skin segmentation. Finally, we present a thinned version of our ensemble that could achieve 84.64% classification accuracy and operate in a real-time environment.Comment: arXiv admin note: substantial text overlap with arXiv:1706.0949

    Soft Biometrics: Globally Coherent Solutions for Hair Segmentation and Style Recognition based on Hierarchical MRFs

    Get PDF
    Markov Random Fields (MRFs) are a populartool in many computer vision problems and faithfully modela broad range of local dependencies. However, rooted in theHammersley-Clifford theorem, they face serious difficulties inenforcing the global coherence of the solutions without using toohigh order cliques that reduce the computational effectiveness ofthe inference phase. Having this problem in mind, we describea multi-layered (hierarchical) architecture for MRFs that isbased exclusively in pairwise connections and typically producesglobally coherent solutions, with 1) one layer working at the local(pixel) level, modelling the interactions between adjacent imagepatches; and 2) a complementary layer working at theobject(hypothesis) level pushing toward globally consistent solutions.During optimization, both layers interact into an equilibriumstate, that not only segments the data, but also classifies it.The proposed MRF architecture is particularly suitable forproblems that deal with biological data (e.g., biometrics), wherethe reasonability of the solutions can be objectively measured.As test case, we considered the problem of hair / facial hairsegmentation and labelling, which are soft biometric labels usefulfor human recognitionin-the-wild. We observed performancelevels close to the state-of-the-art at a much lower computationalcost, both in the segmentation and classification (labelling) tasksinfo:eu-repo/semantics/publishedVersio

    Occlusion-aware 3D Morphable Models and an Illumination Prior for Face Image Analysis

    Get PDF
    Faces in natural images are often occluded by a variety of objects. We propose a fully automated, probabilistic and occlusion-aware 3D morphable face model adaptation framework following an analysis-by-synthesis setup. The key idea is to segment the image into regions explained by separate models. Our framework includes a 3D morphable face model, a prototype-based beard model and a simple model for occlusions and background regions. The segmentation and all the model parameters have to be inferred from the single target image. Face model adaptation and segmentation are solved jointly using an expectation-maximization-like procedure. During the E-step, we update the segmentation and in the M-step the face model parameters are updated. For face model adaptation we apply a stochastic sampling strategy based on the Metropolis-Hastings algorithm. For segmentation, we apply loopy belief propagation for inference in a Markov random field. Illumination estimation is critical for occlusion handling. Our combined segmentation and model adaptation needs a proper initialization of the illumination parameters. We propose a RANSAC-based robust illumination estimation technique. By applying this method to a large face image database we obtain a first empirical distribution of real-world illumination conditions. The obtained empirical distribution is made publicly available and can be used as prior in probabilistic frameworks, for regularization or to synthesize data for deep learning methods
    • 

    corecore